Timezone: »
The ability to detect and count certain substructures in graphs is important for solving many tasks on graph-structured data, especially in the contexts of computational chemistry and biology as well as social network analysis. Inspired by this, we propose to study the expressive power of graph neural networks (GNNs) via their ability to count attributed graph substructures, extending recent works that examine their power in graph isomorphism testing and function approximation. We distinguish between two types of substructure counting: induced-subgraph-count and subgraph-count, and establish both positive and negative answers for popular GNN architectures. Specifically, we prove that Message Passing Neural Networks (MPNNs), 2-Weisfeiler-Lehman (2-WL) and 2-Invariant Graph Networks (2-IGNs) cannot perform induced-subgraph-count of substructures consisting of 3 or more nodes, while they can perform subgraph-count of star-shaped substructures. As an intermediary step, we prove that 2-WL and 2-IGNs are equivalent in distinguishing non-isomorphic graphs, partly answering an open problem raised in Maron et al. (2019). We also prove positive results for k-WL and k-IGNs as well as negative results for k-WL with a finite number of iterations. We then conduct experiments that support the theoretical results for MPNNs and 2-IGNs. Moreover, motivated by substructure counting and inspired by Murphy et al. (2019), we propose the Local Relational Pooling model and demonstrate that it is not only effective for substructure counting but also able to achieve competitive performance on molecular prediction tasks.
Author Information
Zhengdao Chen (New York University)
Lei Chen (New York University)
Soledad Villar (Johns Hopkins)
Joan Bruna (NYU)
More from the Same Authors
-
2021 : An Extensible Benchmark Suite for Learning to Simulate Physical Systems »
Karl Otness · Arvi Gjoka · Joan Bruna · Daniele Panozzo · Benjamin Peherstorfer · Teseo Schneider · Denis Zorin -
2021 Spotlight: Offline RL Without Off-Policy Evaluation »
David Brandfonbrener · Will Whitney · Rajesh Ranganath · Joan Bruna -
2021 : Quantile Filtered Imitation Learning »
David Brandfonbrener · Will Whitney · Rajesh Ranganath · Joan Bruna -
2022 Poster: Exponential Separations in Symmetric Neural Networks »
Aaron Zweig · Joan Bruna -
2022 Poster: When does return-conditioned supervised learning work for offline reinforcement learning? »
David Brandfonbrener · Alberto Bietti · Jacob Buckman · Romain Laroche · Joan Bruna -
2022 Poster: On Non-Linear operators for Geometric Deep Learning »
Grégoire Sergeant-Perthuis · Jakob Maier · Joan Bruna · Edouard Oyallon -
2022 Poster: Learning single-index models with shallow neural networks »
Alberto Bietti · Joan Bruna · Clayton Sanford · Min Jae Song -
2021 Workshop: Out-of-distribution generalization and adaptation in natural and artificial intelligence »
Joshua T Vogelstein · Weiwei Yang · Soledad Villar · Zenna Tavares · Johnathan Flowers · Onyema Osuagwu · Weishung Liu -
2021 Poster: Scalars are universal: Equivariant machine learning, structured like classical physics »
Soledad Villar · David W Hogg · Kate Storey-Fisher · Weichi Yao · Ben Blum-Smith -
2021 Poster: On the Sample Complexity of Learning under Geometric Stability »
Alberto Bietti · Luca Venturi · Joan Bruna -
2021 Poster: On the Cryptographic Hardness of Learning Single Periodic Neurons »
Min Jae Song · Ilias Zadik · Joan Bruna -
2021 Poster: Offline RL Without Off-Policy Evaluation »
David Brandfonbrener · Will Whitney · Rajesh Ranganath · Joan Bruna -
2020 Poster: A mean-field analysis of two-player zero-sum games »
Carles Domingo-Enrich · Samy Jelassi · Arthur Mensch · Grant Rotskoff · Joan Bruna -
2020 Session: Orals & Spotlights Track 26: Graph/Relational/Theory »
Joan Bruna · Cassio de Campos -
2020 Poster: IDEAL: Inexact DEcentralized Accelerated Augmented Lagrangian Method »
Yossi Arjevani · Joan Bruna · Bugra Can · Mert Gurbuzbalaban · Stefanie Jegelka · Hongzhou Lin -
2020 Spotlight: IDEAL: Inexact DEcentralized Accelerated Augmented Lagrangian Method »
Yossi Arjevani · Joan Bruna · Bugra Can · Mert Gurbuzbalaban · Stefanie Jegelka · Hongzhou Lin -
2020 Poster: A Dynamical Central Limit Theorem for Shallow Neural Networks »
Zhengdao Chen · Grant Rotskoff · Joan Bruna · Eric Vanden-Eijnden -
2019 : Poster and Coffee Break 1 »
Aaron Sidford · Aditya Mahajan · Alejandro Ribeiro · Alex Lewandowski · Ali H Sayed · Ambuj Tewari · Angelika Steger · Anima Anandkumar · Asier Mujika · Hilbert J Kappen · Bolei Zhou · Byron Boots · Chelsea Finn · Chen-Yu Wei · Chi Jin · Ching-An Cheng · Christina Yu · Clement Gehring · Craig Boutilier · Dahua Lin · Daniel McNamee · Daniel Russo · David Brandfonbrener · Denny Zhou · Devesh Jha · Diego Romeres · Doina Precup · Dominik Thalmeier · Eduard Gorbunov · Elad Hazan · Elena Smirnova · Elvis Dohmatob · Emma Brunskill · Enrique Munoz de Cote · Ethan Waldie · Florian Meier · Florian Schaefer · Ge Liu · Gergely Neu · Haim Kaplan · Hao Sun · Hengshuai Yao · Jalaj Bhandari · James A Preiss · Jayakumar Subramanian · Jiajin Li · Jieping Ye · Jimmy Smith · Joan Bas Serrano · Joan Bruna · John Langford · Jonathan Lee · Jose A. Arjona-Medina · Kaiqing Zhang · Karan Singh · Yuping Luo · Zafarali Ahmed · Zaiwei Chen · Zhaoran Wang · Zhizhong Li · Zhuoran Yang · Ziping Xu · Ziyang Tang · Yi Mao · David Brandfonbrener · Shirli Di-Castro · Riashat Islam · Zuyue Fu · Abhishek Naik · Saurabh Kumar · Benjamin Petit · Angeliki Kamoutsi · Simone Totaro · Arvind Raghunathan · Rui Wu · Donghwan Lee · Dongsheng Ding · Alec Koppel · Hao Sun · Christian Tjandraatmadja · Mahdi Karami · Jincheng Mei · Chenjun Xiao · Junfeng Wen · Zichen Zhang · Ross Goroshin · Mohammad Pezeshki · Jiaqi Zhai · Philip Amortila · Shuo Huang · Mariya Vasileva · El houcine Bergou · Adel Ahmadyan · Haoran Sun · Sheng Zhang · Lukas Gruber · Yuanhao Wang · Tetiana Parshakova -
2019 : Surya Ganguli, Yasaman Bahri, Florent Krzakala moderated by Lenka Zdeborova »
Florent Krzakala · Yasaman Bahri · Surya Ganguli · Lenka Zdeborová · Adji Bousso Dieng · Joan Bruna -
2019 : Poster Spotlight 1 »
David Brandfonbrener · Joan Bruna · Tom Zahavy · Haim Kaplan · Yishay Mansour · Nikos Karampatziakis · John Langford · Paul Mineiro · Donghwan Lee · Niao He -
2019 : Poster Session #2 »
Yunzhu Li · Peter Meltzer · Jianing Sun · Guillaume SALHA · Marin Vlastelica Pogančić · Chia-Cheng Liu · Fabrizio Frasca · Marc-Alexandre Côté · Vikas Verma · Abdulkadir CELIKKANAT · Pierluca D'Oro · Priyesh Vijayan · Maria Schuld · Petar Veličković · Kshitij Tayal · Yulong Pei · Hao Xu · Lei Chen · Pengyu Cheng · Ines Chami · Dongkwan Kim · Guilherme Gomes · Lukasz Maziarka · Jessica Hoffmann · Ron Levie · Antonia Gogoglou · Shunwang Gong · Federico Monti · Wenlin Wang · Yan Leng · Salvatore Vivona · Daniel Flam-Shepherd · Chester Holtz · Li Zhang · MAHMOUD KHADEMI · I-Chung Hsieh · Aleksandar Stanić · Ziqiao Meng · Yuhang Jiao -
2019 : Opening Remarks »
Reinhard Heckel · Paul Hand · Alex Dimakis · Joan Bruna · Deanna Needell · Richard Baraniuk -
2019 Workshop: Solving inverse problems with deep networks: New architectures, theoretical foundations, and applications »
Reinhard Heckel · Paul Hand · Richard Baraniuk · Joan Bruna · Alex Dimakis · Deanna Needell -
2019 Poster: Gradient Dynamics of Shallow Univariate ReLU Networks »
Francis Williams · Matthew Trager · Daniele Panozzo · Claudio Silva · Denis Zorin · Joan Bruna -
2019 Poster: On the Expressive Power of Deep Polynomial Neural Networks »
Joe Kileel · Matthew Trager · Joan Bruna -
2019 Poster: Finding the Needle in the Haystack with Convolutions: on the benefits of architectural bias »
Stéphane d'Ascoli · Levent Sagun · Giulio Biroli · Joan Bruna -
2019 Poster: On the equivalence between graph isomorphism testing and function approximation with GNNs »
Zhengdao Chen · Soledad Villar · Lei Chen · Joan Bruna -
2019 Poster: Stability of Graph Scattering Transforms »
Fernando Gama · Alejandro Ribeiro · Joan Bruna -
2018 : Invited Talk 3 »
Joan Bruna -
2018 : Joan Bruna »
Joan Bruna -
2017 Tutorial: Geometric Deep Learning on Graphs and Manifolds »
Michael Bronstein · Joan Bruna · arthur szlam · Xavier Bresson · Yann LeCun -
2014 Poster: Exploiting Linear Structure Within Convolutional Networks for Efficient Evaluation »
Emily Denton · Wojciech Zaremba · Joan Bruna · Yann LeCun · Rob Fergus