Timezone: »
We study an online learning problem subject to the constraint of individual fairness, which requires that similar individuals are treated similarly. Unlike prior work on individual fairness, we do not assume the similarity measure among individuals is known, nor do we assume that such measure takes a certain parametric form. Instead, we leverage the existence of an auditor who detects fairness violations without enunciating the quantitative measure. In each round, the auditor examines the learner's decisions and attempts to identify a pair of individuals that are treated unfairly by the learner. We provide a general reduction framework that reduces online classification in our model to standard online classification, which allows us to leverage existing online learning algorithms to achieve sub-linear regret and number of fairness violations. Surprisingly, in the stochastic setting where the data are drawn independently from a distribution, we are also able to establish PAC-style fairness and accuracy generalization guarantees (Rothblum and Yona (2018)), despite only having access to a very restricted form of fairness feedback. Our fairness generalization bound qualitatively matches the uniform convergence bound of Rothblum and Yona (2018), while also providing a meaningful accuracy generalization guarantee. Our results resolve an open question by Gillen et al. (2018) by showing that online learning under an unknown individual fairness constraint is possible even without assuming a strong parametric form of the underlying similarity measure.
Author Information
Yahav Bechavod (Hebrew University)
Yahav Bechavod is a PhD student at the School of Computer Science and Engineering at the Hebrew University, advised by Prof. Amit Daniely. His research explores foundational questions in the fields of machine learning, algorithmic fairness, and learning in the presence of strategic behavior. He is an Apple Scholar in AI\ML, and a recipient of the Charles Clore Foundation PhD Fellowship and the KLA Award for Research Excellence in PhD. He also holds an MS (Computer Science, Summa Cum Laude) and BS (Mathematics and Computer Science) from the Hebrew University.
Christopher Jung (University of Pennsylvania)
Steven Wu (Carnegie Mellon University)
Related Events (a corresponding poster, oral, or spotlight)
-
2020 Poster: Metric-Free Individual Fairness in Online Learning »
Wed. Dec 9th 05:00 -- 07:00 PM Room Poster Session 3 #861
More from the Same Authors
-
2021 : What Would the Expert do()?: Causal Imitation Learning »
Gokul Swamy · Sanjiban Choudhury · James Bagnell · Steven Wu -
2021 : Iterative Methods for Private Synthetic Data: Unifying Framework and New Methods »
Terrance Liu · Giuseppe Vietri · Steven Wu -
2021 : What Would the Expert do()?: Causal Imitation Learning »
Gokul Swamy · Sanjiban Choudhury · James Bagnell · Steven Wu -
2021 : What Would the Expert $do(\cdot)$?: Causal Imitation Learning »
Gokul Swamy · Sanjiban Choudhury · James Bagnell · Steven Wu -
2021 : Bayesian Persuasion for Algorithmic Recourse »
Keegan Harris · Valerie Chen · Joon Sik Kim · Ameet Talwalkar · Hoda Heidari · Steven Wu -
2021 : What Would the Expert $do(\cdot)$?: Causal Imitation Learning »
Gokul Swamy · Sanjiban Choudhury · James Bagnell · Steven Wu -
2021 : Information Discrepancy in Strategic Learning »
Yahav Bechavod · Chara Podimata · Steven Wu · Juba Ziani -
2021 : Gaming Helps! Learning from Strategic Interactions in Natural Dynamics »
Yahav Bechavod · Katrina Ligett · Steven Wu · Juba Ziani -
2021 : Bayesian Persuasion for Algorithmic Recourse »
Keegan Harris · Valerie Chen · Joon Kim · Ameet S Talwalkar · Hoda Heidari · Steven Wu -
2021 : What Would the Expert $do(\cdot)$?: Causal Imitation Learning »
Gokul Swamy · Sanjiban Choudhury · James Bagnell · Steven Wu -
2021 : What Would the Expert $do(\cdot)$?: Causal Imitation Learning »
Gokul Swamy · Sanjiban Choudhury · James Bagnell · Steven Wu -
2021 : What Would the Expert $do(\cdot)$?: Causal Imitation Learning »
Gokul Swamy · Sanjiban Choudhury · James Bagnell · Steven Wu -
2021 : Information Discrepancy in Strategic Learning »
Yahav Bechavod · Chara Podimata · Steven Wu · Juba Ziani -
2021 : Gaming Helps! Learning from Strategic Interactions in Natural Dynamics »
Yahav Bechavod · Katrina Ligett · Steven Wu · Juba Ziani -
2021 : Bayesian Persuasion for Algorithmic Recourse »
Keegan Harris · Valerie Chen · Joon Kim · Ameet S Talwalkar · Hoda Heidari · Steven Wu -
2022 : Strategy-Aware Contextual Bandits »
Keegan Harris · Chara Podimata · Steven Wu -
2022 : Choosing Public Datasets for Private Machine Learning via Gradient Subspace Distance »
Xin Gu · Gautam Kamath · Steven Wu -
2022 : Strategy-Aware Contextual Bandits »
Keegan Harris · Chara Podimata · Steven Wu -
2022 : Strategy-Aware Contextual Bandits »
Keegan Harris · Chara Podimata · Steven Wu -
2022 : Differentially Private Gradient Boosting on Linear Learners for Tabular Data »
Saeyoung Rho · Shuai Tang · Sergul Aydore · Michael Kearns · Aaron Roth · Yu-Xiang Wang · Steven Wu · Cedric Archambeau -
2022 : Counterfactual Decision Support Under Treatment-Conditional Outcome Measurement Error »
Luke Guerdan · Amanda Coston · Kenneth Holstein · Steven Wu -
2022 Poster: On Privacy and Personalization in Cross-Silo Federated Learning »
Ken Liu · Shengyuan Hu · Steven Wu · Virginia Smith -
2022 Poster: Brownian Noise Reduction: Maximizing Privacy Subject to Accuracy Constraints »
Justin Whitehouse · Aaditya Ramdas · Steven Wu · Ryan Rogers -
2022 Poster: Incentivizing Combinatorial Bandit Exploration »
Xinyan Hu · Dung Ngo · Aleksandrs Slivkins · Steven Wu -
2022 Poster: Sequence Model Imitation Learning with Unobserved Contexts »
Gokul Swamy · Sanjiban Choudhury · J. Bagnell · Steven Wu -
2022 Poster: Private Synthetic Data for Multitask Learning and Marginal Queries »
Giuseppe Vietri · Cedric Archambeau · Sergul Aydore · William Brown · Michael Kearns · Aaron Roth · Ankit Siva · Shuai Tang · Steven Wu -
2022 Poster: Minimax Optimal Online Imitation Learning via Replay Estimation »
Gokul Swamy · Nived Rajaraman · Matt Peng · Sanjiban Choudhury · J. Bagnell · Steven Wu · Jiantao Jiao · Kannan Ramchandran -
2022 Poster: Bayesian Persuasion for Algorithmic Recourse »
Keegan Harris · Valerie Chen · Joon Kim · Ameet Talwalkar · Hoda Heidari · Steven Wu -
2021 : Leveraging strategic interactions for causal discovery »
Steven Wu -
2021 : Bayesian Persuasion for Algorithmic Recourse »
Keegan Harris · Valerie Chen · Joon Sik Kim · Ameet Talwalkar · Hoda Heidari · Steven Wu -
2021 Workshop: Learning and Decision-Making with Strategic Feedback (StratML) »
Yahav Bechavod · Hoda Heidari · Eric Mazumdar · Celestine Mendler-Dünner · Tijana Zrnic -
2021 : What Would the Expert do()?: Causal Imitation Learning »
Gokul Swamy · Sanjiban Choudhury · James Bagnell · Steven Wu -
2021 Poster: Iterative Methods for Private Synthetic Data: Unifying Framework and New Methods »
Terrance Liu · Giuseppe Vietri · Steven Wu -
2021 Poster: Stateful Strategic Regression »
Keegan Harris · Hoda Heidari · Steven Wu -
2020 Poster: Understanding Gradient Clipping in Private SGD: A Geometric Perspective »
Xiangyi Chen · Steven Wu · Mingyi Hong -
2020 Poster: Distributed Training with Heterogeneous Data: Bridging Median- and Mean-Based Algorithms »
Xiangyi Chen · Tiancong Chen · Haoran Sun · Steven Wu · Mingyi Hong -
2020 Spotlight: Understanding Gradient Clipping in Private SGD: A Geometric Perspective »
Xiangyi Chen · Steven Wu · Mingyi Hong -
2020 Session: Orals & Spotlights Track 20: Social/Adversarial Learning »
Steven Wu · Miro Dudik -
2019 Poster: Equal Opportunity in Online Classification with Partial Feedback »
Yahav Bechavod · Katrina Ligett · Aaron Roth · Bo Waggoner · Steven Wu -
2019 Poster: Random Quadratic Forms with Dependence: Applications to Restricted Isometry and Beyond »
Arindam Banerjee · Qilong Gu · Vidyashankar Sivakumar · Steven Wu -
2019 Poster: Private Hypothesis Selection »
Mark Bun · Gautam Kamath · Thomas Steinke · Steven Wu -
2019 Poster: Locally Private Gaussian Estimation »
Matthew Joseph · Janardhan Kulkarni · Jieming Mao · Steven Wu -
2018 Poster: Online Learning with an Unknown Fairness Metric »
Stephen Gillen · Christopher Jung · Michael Kearns · Aaron Roth -
2017 : Spotlights »
Antti Kangasrääsiö · Richard Everett · Yitao Liang · Yang Cai · Steven Wu · Vidya Muthukumar · Sven Schmit -
2017 Poster: Accuracy First: Selecting a Differential Privacy Level for Accuracy Constrained ERM »
Katrina Ligett · Seth Neel · Aaron Roth · Bo Waggoner · Steven Wu -
2016 Poster: Learning from Rational Behavior: Predicting Solutions to Unknown Linear Programs »
Shahin Jabbari · Ryan Rogers · Aaron Roth · Steven Wu