`

Timezone: »

 
Poster
Bootstrapping neural processes
Juho Lee · Yoonho Lee · Jungtaek Kim · Eunho Yang · Sung Ju Hwang · Yee Whye Teh

Thu Dec 10 09:00 AM -- 11:00 AM (PST) @ Poster Session 5 #1612

Unlike in the traditional statistical modeling for which a user typically hand-specify a prior, Neural Processes (NPs) implicitly define a broad class of stochastic processes with neural networks. Given a data stream, NP learns a stochastic process that best describes the data. While this ``data-driven'' way of learning stochastic processes has proven to handle various types of data, NPs still relies on an assumption that uncertainty in stochastic processes is modeled by a single latent variable, which potentially limits the flexibility. To this end, we propose the Bootstrapping Neural Process (BNP), a novel extension of the NP family using the bootstrap. The bootstrap is a classical data-driven technique for estimating uncertainty, which allows BNP to learn the stochasticity in NPs without assuming a particular form. We demonstrate the efficacy of BNP on various types of data and its robustness in the presence of model-data mismatch.

Author Information

Juho Lee (KAIST, AITRICS)
Yoonho Lee (AITRICS)
Jungtaek Kim (POSTECH)
Eunho Yang (Korea Advanced Institute of Science and Technology; AItrics)
Sung Ju Hwang (KAIST, AITRICS)
Yee Whye Teh (University of Oxford, DeepMind)

I am a Professor of Statistical Machine Learning at the Department of Statistics, University of Oxford and a Research Scientist at DeepMind. I am also an Alan Turing Institute Fellow and a European Research Council Consolidator Fellow. I obtained my Ph.D. at the University of Toronto (working with Geoffrey Hinton), and did postdoctoral work at the University of California at Berkeley (with Michael Jordan) and National University of Singapore (as Lee Kuan Yew Postdoctoral Fellow). I was a Lecturer then a Reader at the Gatsby Computational Neuroscience Unit, UCL, and a tutorial fellow at University College Oxford, prior to my current appointment. I am interested in the statistical and computational foundations of intelligence, and works on scalable machine learning, probabilistic models, Bayesian nonparametrics and deep learning. I was programme co-chair of ICML 2017 and AISTATS 2010.

More from the Same Authors