Timezone: »
Conditional Value at Risk (CVaR) is a 'coherent risk measure' which generalizes expectation (reduced to a boundary parameter setting).
Widely used in mathematical finance, it is garnering increasing interest in machine learning as an alternate approach to regularization, and as a means for ensuring fairness.
This paper presents a generalization bound for learning algorithms that minimize the CVaR of the empirical loss.
The bound is of PAC-Bayesian type and is guaranteed to be small when the empirical CVaR is small.
We achieve this by reducing the problem of estimating CVaR to that of merely estimating an expectation. This then enables us, as a by-product, to obtain concentration inequalities for CVaR even when the random variable in question is unbounded.
Author Information
Zakaria Mhammedi (The Australian National University and Data61)
Benjamin Guedj (Inria & University College London)
Benjamin Guedj is a tenured research scientist at Inria since 2014, affiliated to the Lille - Nord Europe research centre in France. He is also affiliated with the mathematics department of the University of Lille. Since 2018, he is a Principal Research Fellow at the Centre for Artificial Intelligence and Department of Computer Science at University College London. He is also a visiting researcher at The Alan Turing Institute. Since 2020, he is the founder and scientific director of The Inria London Programme, a strategic partnership between Inria and UCL as part of a France-UK scientific initiative. He obtained his Ph.D. in mathematics in 2013 from UPMC (Université Pierre & Marie Curie, France) under the supervision of Gérard Biau and Éric Moulines. Prior to that, he was a research assistant at DTU Compute (Denmark). His main line of research is in statistical machine learning, both from theoretical and algorithmic perspectives. He is primarily interested in the design, analysis and implementation of statistical machine learning methods for high dimensional problems, mainly using the PAC-Bayesian theory.
Robert Williamson (ANU)
Related Events (a corresponding poster, oral, or spotlight)
-
2020 Poster: PAC-Bayesian Bound for the Conditional Value at Risk »
Tue. Dec 8th 05:00 -- 07:00 PM Room Poster Session 1 #522
More from the Same Authors
-
2021 : Progress in Self-Certified Neural Networks »
Maria Perez-Ortiz · Omar Rivasplata · Emilio Parrado-Hernández · Benjamin Guedj · John Shawe-Taylor -
2022 Poster: KSD Aggregated Goodness-of-fit Test »
Antonin Schrab · Benjamin Guedj · Arthur Gretton -
2022 Poster: Efficient Aggregated Kernel Tests using Incomplete $U$-statistics »
Antonin Schrab · Ilmun Kim · Benjamin Guedj · Arthur Gretton -
2022 Poster: On Margins and Generalisation for Voting Classifiers »
Felix Biggs · Valentina Zantedeschi · Benjamin Guedj -
2022 Poster: Online PAC-Bayes Learning »
Maxime Haddouche · Benjamin Guedj -
2021 : Panel »
Mohammad Emtiyaz Khan · Atoosa Kasirzadeh · Anna Rogers · Javier González · Suresh Venkatasubramanian · Robert Williamson -
2021 : Invited Talk 1 »
Robert Williamson -
2021 Poster: Risk Monotonicity in Statistical Learning »
Zakaria Mhammedi -
2021 Oral: Risk Monotonicity in Statistical Learning »
Zakaria Mhammedi -
2021 Poster: Learning Stochastic Majority Votes by Minimizing a PAC-Bayes Generalization Bound »
Valentina Zantedeschi · Paul Viallard · Emilie Morvant · Rémi Emonet · Amaury Habrard · Pascal Germain · Benjamin Guedj -
2020 Poster: Learning the Linear Quadratic Regulator from Nonlinear Observations »
Zakaria Mhammedi · Dylan Foster · Max Simchowitz · Dipendra Misra · Wen Sun · Akshay Krishnamurthy · Alexander Rakhlin · John Langford -
2019 : Break / Poster Session 1 »
Antonia Marcu · Yao-Yuan Yang · Pascale Gourdeau · Chen Zhu · Thodoris Lykouris · Jianfeng Chi · Mark Kozdoba · Arjun Nitin Bhagoji · Xiaoxia Wu · Jay Nandy · Michael T Smith · Bingyang Wen · Yuege Xie · Konstantinos Pitas · Suprosanna Shit · Maksym Andriushchenko · Dingli Yu · Gaël Letarte · Misha Khodak · Hussein Mozannar · Chara Podimata · James Foulds · Yizhen Wang · Huishuai Zhang · Ondrej Kuzelka · Alexander Levine · Nan Lu · Zakaria Mhammedi · Paul Viallard · Diana Cai · Lovedeep Gondara · James Lucas · Yasaman Mahdaviyeh · Aristide Baratin · Rishi Bommasani · Alessandro Barp · Andrew Ilyas · Kaiwen Wu · Jens Behrmann · Omar Rivasplata · Amir Nazemi · Aditi Raghunathan · Will Stephenson · Sahil Singla · Akhil Gupta · YooJung Choi · Yannic Kilcher · Clare Lyle · Edoardo Manino · Andrew Bennett · Zhi Xu · Niladri Chatterji · Emre Barut · Flavien Prost · Rodrigo Toro Icarte · Arno Blaas · Chulhee Yun · Sahin Lale · YiDing Jiang · Tharun Kumar Reddy Medini · Ashkan Rezaei · Alexander Meinke · Stephen Mell · Gary Kazantsev · Shivam Garg · Aradhana Sinha · Vishnu Lokhande · Geovani Rizk · Han Zhao · Aditya Kumar Akash · Jikai Hou · Ali Ghodsi · Matthias Hein · Tyler Sypherd · Yichen Yang · Anastasia Pentina · Pierre Gillot · Antoine Ledent · Guy Gur-Ari · Noah MacAulay · Tianzong Zhang -
2019 Poster: PAC-Bayes Un-Expected Bernstein Inequality »
Zakaria Mhammedi · Peter Grünwald · Benjamin Guedj -
2019 Poster: Dichotomize and Generalize: PAC-Bayesian Binary Activated Deep Neural Networks »
Gaël Letarte · Pascal Germain · Benjamin Guedj · Francois Laviolette -
2018 Poster: Constant Regret, Generalized Mixability, and Mirror Descent »
Zakaria Mhammedi · Robert Williamson -
2018 Spotlight: Constant Regret, Generalized Mixability, and Mirror Descent »
Zakaria Mhammedi · Robert Williamson -
2017 : Concluding remarks »
Francis Bach · Benjamin Guedj · Pascal Germain -
2017 : Overture »
Benjamin Guedj · Francis Bach · Pascal Germain -
2017 Workshop: (Almost) 50 shades of Bayesian Learning: PAC-Bayesian trends and insights »
Benjamin Guedj · Pascal Germain · Francis Bach