Timezone: »
We propose firefly neural architecture descent, a general framework for progressively and dynamically growing neural networks to jointly optimize the networks' parameters and architectures. Our method works in a steepest descent fashion, which iteratively finds the best network within a functional neighborhood of the original network that includes a diverse set of candidate network structures. By using Taylor approximation, the optimal network structure in the neighborhood can be found with a greedy selection procedure. We show that firefly descent can flexibly grow networks both wider and deeper, and can be applied to learn accurate but resource-efficient neural architectures that avoid catastrophic forgetting in continual learning. Empirically, firefly descent achieves promising results on both neural architecture search and continual learning. In particular, on a challenging continual image classification task, it learns networks that are smaller in size but have higher average accuracy than those learned by the state-of-the-art methods.
Author Information
Lemeng Wu (UT Austin)
Bo Liu (University of Texas at Austin)
Peter Stone (The University of Texas at Austin, Sony AI)
Qiang Liu (UT Austin)
More from the Same Authors
-
2020 : Paper 19: Multiagent Driving Policy for Congestion Reduction in a Large Scale Scenario »
Jiaxun Cui · Peter Stone -
2021 : Task-Independent Causal State Abstraction »
Zizhao Wang · Xuesu Xiao · Yuke Zhu · Peter Stone -
2021 : Leveraging Information about Background Music in Human-Robot Interaction »
Elad Liebman · Peter Stone -
2021 : Safe Evaluation For Offline Learning: \\Are We Ready To Deploy? »
Hager Radi · Josiah Hanna · Peter Stone · Matthew Taylor -
2021 : Safe Evaluation For Offline Learning: \\Are We Ready To Deploy? »
Hager Radi · Josiah Hanna · Peter Stone · Matthew Taylor -
2022 : BOME! Bilevel Optimization Made Easy: A Simple First-Order Approach »
Mao Ye · Bo Liu · Stephen Wright · Peter Stone · Qiang Liu -
2022 : Diffusion-based Molecule Generation with Informative Prior Bridges »
Chengyue Gong · Lemeng Wu · Xingchao Liu · Mao Ye · Qiang Liu -
2022 : ABC: Adversarial Behavioral Cloning for Offline Mode-Seeking Imitation Learning »
Eddy Hudson · Ishan Durugkar · Garrett Warnell · Peter Stone -
2022 : First hitting diffusion models »
Mao Ye · Lemeng Wu · Qiang Liu -
2022 : Neural Volumetric Mesh Generator »
Yan Zheng · Lemeng Wu · Xingchao Liu · Zhen Chen · Qiang Liu · Qixing Huang -
2022 : Let us Build Bridges: Understanding and Extending Diffusion Generative Models »
Xingchao Liu · Lemeng Wu · Mao Ye · Qiang Liu -
2022 : ABC: Adversarial Behavioral Cloning for Offline Mode-Seeking Imitation Learning »
Eddy Hudson · Ishan Durugkar · Garrett Warnell · Peter Stone -
2023 Poster: FAMO: Fast Adaptive Multitask Optimization »
Bo Liu · Yihao Feng · Peter Stone · Qiang Liu -
2023 Poster: ELDEN: Exploration via Local Dependencies »
Zizhao Wang · Jiaheng Hu · Roberto Martín-Martín · Peter Stone -
2023 Poster: f-Policy Gradients: A General Framework for Goal-Conditioned RL using f-Divergences »
Siddhant Agarwal · Ishan Durugkar · Peter Stone · Amy Zhang -
2023 Poster: LIBERO: Benchmarking Knowledge Transfer for Lifelong Robot Learning »
Bo Liu · Yifeng Zhu · Chongkai Gao · Yihao Feng · Qiang Liu · Yuke Zhu · Peter Stone -
2022 : Poster Session 2 »
Jinwuk Seok · Bo Liu · Ryotaro Mitsuboshi · David Martinez-Rubio · Weiqiang Zheng · Ilgee Hong · Chen Fan · Kazusato Oko · Bo Tang · Miao Cheng · Aaron Defazio · Tim G. J. Rudner · Gabriele Farina · Vishwak Srinivasan · Ruichen Jiang · Peng Wang · Jane Lee · Nathan Wycoff · Nikhil Ghosh · Yinbin Han · David Mueller · Liu Yang · Amrutha Varshini Ramesh · Siqi Zhang · Kaifeng Lyu · David Yunis · Kumar Kshitij Patel · Fangshuo Liao · Dmitrii Avdiukhin · Xiang Li · Sattar Vakili · Jiaxin Shi -
2022 : Panel RL Theory-Practice Gap »
Peter Stone · Matej Balog · Jonas Buchli · Jason Gauci · Dhruv Madeka -
2022 : Panel RL Benchmarks »
Minmin Chen · Pablo Samuel Castro · Caglar Gulcehre · Tony Jebara · Peter Stone -
2022 : Invited talk: Outracing Champion Gran Turismo Drivers with Deep Reinforcement Learning »
Peter Stone -
2022 : Human in the Loop Learning for Robot Navigation and Task Learning from Implicit Human Feedback »
Peter Stone -
2022 Poster: First Hitting Diffusion Models for Generating Manifold, Graph and Categorical Data »
Mao Ye · Lemeng Wu · Qiang Liu -
2022 Poster: BOME! Bilevel Optimization Made Easy: A Simple First-Order Approach »
Bo Liu · Mao Ye · Stephen Wright · Peter Stone · Qiang Liu -
2022 Poster: Value Function Decomposition for Iterative Design of Reinforcement Learning Agents »
James MacGlashan · Evan Archer · Alisa Devlic · Takuma Seno · Craig Sherstan · Peter Wurman · Peter Stone -
2022 Poster: Diffusion-based Molecule Generation with Informative Prior Bridges »
Lemeng Wu · Chengyue Gong · Xingchao Liu · Mao Ye · Qiang Liu -
2021 Poster: Adversarial Intrinsic Motivation for Reinforcement Learning »
Ishan Durugkar · Mauricio Tec · Scott Niekum · Peter Stone -
2021 Poster: Conflict-Averse Gradient Descent for Multi-task learning »
Bo Liu · Xingchao Liu · Xiaojie Jin · Peter Stone · Qiang Liu -
2021 Poster: Machine versus Human Attention in Deep Reinforcement Learning Tasks »
Sihang Guo · Ruohan Zhang · Bo Liu · Yifeng Zhu · Dana Ballard · Mary Hayhoe · Peter Stone -
2020 : Q&A: Peter Stone (The University of Texas at Austin): Ad Hoc Autonomous Agent Teams: Collaboration without Pre-Coordination, with Natasha Jaques (Google) [moderator] »
Peter Stone · Natasha Jaques -
2020 : Invited Speaker: Peter Stone (The University of Texas at Austin) on Ad Hoc Autonomous Agent Teams: Collaboration without Pre-Coordination »
Peter Stone -
2020 : Panel discussion »
Pierre-Yves Oudeyer · Marc Bellemare · Peter Stone · Matt Botvinick · Susan Murphy · Anusha Nagabandi · Ashley Edwards · Karen Liu · Pieter Abbeel -
2020 : Discussion Panel »
Pete Florence · Dorsa Sadigh · Carolina Parada · Jeannette Bohg · Roberto Calandra · Peter Stone · Fabio Ramos -
2020 : Invited talk: Peter Stone "Grounded Simulation Learning for Sim2Real with Connections to Off-Policy Reinforcement Learning" »
Peter Stone -
2020 Poster: Stein Self-Repulsive Dynamics: Benefits From Past Samples »
Mao Ye · Tongzheng Ren · Qiang Liu -
2020 Poster: Black-Box Certification with Randomized Smoothing: A Functional Optimization Based Framework »
Dinghuai Zhang · Mao Ye · Chengyue Gong · Zhanxing Zhu · Qiang Liu -
2020 Poster: Certified Monotonic Neural Networks »
Xingchao Liu · Xing Han · Na Zhang · Qiang Liu -
2020 Spotlight: Certified Monotonic Neural Networks »
Xingchao Liu · Xing Han · Na Zhang · Qiang Liu -
2020 Poster: Greedy Optimization Provably Wins the Lottery: Logarithmic Number of Winning Tickets is Enough »
Mao Ye · Lemeng Wu · Qiang Liu -
2020 Poster: An Imitation from Observation Approach to Transfer Learning with Dynamics Mismatch »
Siddharth Desai · Ishan Durugkar · Haresh Karnan · Garrett Warnell · Josiah Hanna · Peter Stone -
2020 Poster: Off-Policy Interval Estimation with Lipschitz Value Iteration »
Ziyang Tang · Yihao Feng · Na Zhang · Jian Peng · Qiang Liu -
2019 : Poster and Coffee Break 2 »
Karol Hausman · Kefan Dong · Ken Goldberg · Lihong Li · Lin Yang · Lingxiao Wang · Lior Shani · Liwei Wang · Loren Amdahl-Culleton · Lucas Cassano · Marc Dymetman · Marc Bellemare · Marcin Tomczak · Margarita Castro · Marius Kloft · Marius-Constantin Dinu · Markus Holzleitner · Martha White · Mengdi Wang · Michael Jordan · Mihailo Jovanovic · Ming Yu · Minshuo Chen · Moonkyung Ryu · Muhammad Zaheer · Naman Agarwal · Nan Jiang · Niao He · Nikolaus Yasui · Nikos Karampatziakis · Nino Vieillard · Ofir Nachum · Olivier Pietquin · Ozan Sener · Pan Xu · Parameswaran Kamalaruban · Paul Mineiro · Paul Rolland · Philip Amortila · Pierre-Luc Bacon · Prakash Panangaden · Qi Cai · Qiang Liu · Quanquan Gu · Raihan Seraj · Richard Sutton · Rick Valenzano · Robert Dadashi · Rodrigo Toro Icarte · Roshan Shariff · Roy Fox · Ruosong Wang · Saeed Ghadimi · Samuel Sokota · Sean Sinclair · Sepp Hochreiter · Sergey Levine · Sergio Valcarcel Macua · Sham Kakade · Shangtong Zhang · Sheila McIlraith · Shie Mannor · Shimon Whiteson · Shuai Li · Shuang Qiu · Wai Lok Li · Siddhartha Banerjee · Sitao Luan · Tamer Basar · Thinh Doan · Tianhe Yu · Tianyi Liu · Tom Zahavy · Toryn Klassen · Tuo Zhao · Vicenç Gómez · Vincent Liu · Volkan Cevher · Wesley Suttle · Xiao-Wen Chang · Xiaohan Wei · Xiaotong Liu · Xingguo Li · Xinyi Chen · Xingyou Song · Yao Liu · YiDing Jiang · Yihao Feng · Yilun Du · Yinlam Chow · Yinyu Ye · Yishay Mansour · · Yonathan Efroni · Yongxin Chen · Yuanhao Wang · Bo Dai · Chen-Yu Wei · Harsh Shrivastava · Hongyang Zhang · Qinqing Zheng · SIDDHARTHA SATPATHI · Xueqing Liu · Andreu Vall -
2019 : Poster Spotlight 2 »
Aaron Sidford · Mengdi Wang · Lin Yang · Yinyu Ye · Zuyue Fu · Zhuoran Yang · Yongxin Chen · Zhaoran Wang · Ofir Nachum · Bo Dai · Ilya Kostrikov · Dale Schuurmans · Ziyang Tang · Yihao Feng · Lihong Li · Denny Zhou · Qiang Liu · Rodrigo Toro Icarte · Ethan Waldie · Toryn Klassen · Rick Valenzano · Margarita Castro · Simon Du · Sham Kakade · Ruosong Wang · Minshuo Chen · Tianyi Liu · Xingguo Li · Zhaoran Wang · Tuo Zhao · Philip Amortila · Doina Precup · Prakash Panangaden · Marc Bellemare -
2019 Poster: A Kernel Loss for Solving the Bellman Equation »
Yihao Feng · Lihong Li · Qiang Liu -
2019 Poster: Splitting Steepest Descent for Growing Neural Architectures »
Lemeng Wu · Dilin Wang · Qiang Liu -
2019 Spotlight: Splitting Steepest Descent for Growing Neural Architectures »
Lemeng Wu · Dilin Wang · Qiang Liu -
2019 Poster: Stein Variational Gradient Descent With Matrix-Valued Kernels »
Dilin Wang · Ziyang Tang · Chandrajit Bajaj · Qiang Liu -
2019 Poster: Exploration via Hindsight Goal Generation »
Zhizhou Ren · Kefan Dong · Yuan Zhou · Qiang Liu · Jian Peng -
2018 : Peter Stone »
Peter Stone -
2018 : Control Algorithms for Imitation Learning from Observation »
Peter Stone -
2018 : Peter Stone »
Peter Stone -
2018 Poster: Variational Inference with Tail-adaptive f-Divergence »
Dilin Wang · Hao Liu · Qiang Liu -
2018 Oral: Variational Inference with Tail-adaptive f-Divergence »
Dilin Wang · Hao Liu · Qiang Liu -
2018 Poster: Breaking the Curse of Horizon: Infinite-Horizon Off-Policy Estimation »
Qiang Liu · Lihong Li · Ziyang Tang · Denny Zhou -
2018 Spotlight: Breaking the Curse of Horizon: Infinite-Horizon Off-Policy Estimation »
Qiang Liu · Lihong Li · Ziyang Tang · Denny Zhou -
2018 Poster: Stein Variational Gradient Descent as Moment Matching »
Qiang Liu · Dilin Wang -
2016 : Peter Stone (University of Texas at Austin) »
Peter Stone -
2015 Workshop: Learning, Inference and Control of Multi-Agent Systems »
Vicenç Gómez · Gerhard Neumann · Jonathan S Yedidia · Peter Stone