Timezone: »
We study the problem of semi-supervised learning on graphs, for which graph neural networks (GNNs) have been extensively explored. However, most existing GNNs inherently suffer from the limitations of over-smoothing, non-robustness, and weak-generalization when labeled nodes are scarce. In this paper, we propose a simple yet effective framework—GRAPH RANDOM NEURAL NETWORKS (GRAND)—to address these issues. In GRAND, we first design a random propagation strategy to perform graph data augmentation. Then we leverage consistency regularization to optimize the prediction consistency of unlabeled nodes across different data augmentations. Extensive experiments on graph benchmark datasets suggest that GRAND significantly outperforms state-of- the-art GNN baselines on semi-supervised node classification. Finally, we show that GRAND mitigates the issues of over-smoothing and non-robustness, exhibiting better generalization behavior than existing GNNs. The source code of GRAND is publicly available at https://github.com/Grand20/grand.
Author Information
Wenzheng Feng (Tsinghua University)
Jie Zhang (Webank Co.,Ltd)
Yuxiao Dong (Microsoft)
Yu Han (Tsinghua University)
Huanbo Luan (Tsinghua University)
Qian Xu (WeBank)
Qiang Yang (WeBank and HKUST)
Evgeny Kharlamov (Bosch Center for Artificial Intelligence)
Jie Tang (Tsinghua University)

Jie Tang is a WeBank Chair Professor of Computer Science at Tsinghua University. He is a Fellow of the ACM, a Fellow of AAAI, and a Fellow of IEEE. His interest is artificial general intelligence (AGI). His research received the SIGKDD Test-of-Time Award (10-year Best Paper). He also received the SIGKDD Service Award. Recently, he puts all efforts into Large Language Models (LLMs): GLM, ChatGLM, etc.
Related Events (a corresponding poster, oral, or spotlight)
-
2020 Poster: Graph Random Neural Networks for Semi-Supervised Learning on Graphs »
Thu. Dec 10th 05:00 -- 07:00 PM Room Poster Session 5 #1424
More from the Same Authors
-
2021 : A Large-Scale Database for Graph Representation Learning »
Scott Freitas · Yuxiao Dong · Joshua Neil · Duen Horng Chau -
2021 : Graph Robustness Benchmark: Benchmarking the Adversarial Robustness of Graph Machine Learning »
Qinkai Zheng · Xu Zou · Yuxiao Dong · Yukuo Cen · Da Yin · Jiarong Xu · YANG YANG · Jie Tang -
2021 : OGB-LSC: A Large-Scale Challenge for Machine Learning on Graphs »
Weihua Hu · Matthias Fey · Hongyu Ren · Maho Nakata · Yuxiao Dong · Jure Leskovec -
2023 Poster: ImageReward: Learning and Evaluating Human Preferences for Text-to-Image Generation »
Jiazheng Xu · Xiao Liu · Yuchen Wu · Yuxuan Tong · Qinkai Li · Ming Ding · Jie Tang · Yuxiao Dong -
2023 Panel: Panel: Jie Tang Sasha Rush Aakanksha Chowdhery Angela Fan Percy Liang »
Alexander Rush · Aakanksha Chowdhery · Angela Fan · Percy Liang · Jie Tang -
2022 Poster: CogView2: Faster and Better Text-to-Image Generation via Hierarchical Transformers »
Ming Ding · Wendi Zheng · Wenyi Hong · Jie Tang -
2021 : Invited talk 3 »
Jie Tang -
2021 Poster: Adaptive Diffusion in Graph Neural Networks »
Jialin Zhao · Yuxiao Dong · Ming Ding · Evgeny Kharlamov · Jie Tang -
2021 Poster: CogView: Mastering Text-to-Image Generation via Transformers »
Ming Ding · Zhuoyi Yang · Wenyi Hong · Wendi Zheng · Chang Zhou · Da Yin · Junyang Lin · Xu Zou · Zhou Shao · Hongxia Yang · Jie Tang -
2021 : A Large-Scale Database for Graph Representation Learning »
Scott Freitas · Yuxiao Dong · Joshua Neil · Duen Horng Chau -
2021 Poster: UFC-BERT: Unifying Multi-Modal Controls for Conditional Image Synthesis »
Zhu Zhang · Jianxin Ma · Chang Zhou · Rui Men · Zhikang Li · Ming Ding · Jie Tang · Jingren Zhou · Hongxia Yang -
2021 Poster: A Hierarchical Reinforcement Learning Based Optimization Framework for Large-scale Dynamic Pickup and Delivery Problems »
Yi Ma · Xiaotian Hao · Jianye Hao · Jiawen Lu · Xing Liu · Tong Xialiang · Mingxuan Yuan · Zhigang Li · Jie Tang · Zhaopeng Meng -
2020 Poster: Open Graph Benchmark: Datasets for Machine Learning on Graphs »
Weihua Hu · Matthias Fey · Marinka Zitnik · Yuxiao Dong · Hongyu Ren · Bowen Liu · Michele Catasta · Jure Leskovec -
2020 Spotlight: Open Graph Benchmark: Datasets for Machine Learning on Graphs »
Weihua Hu · Matthias Fey · Marinka Zitnik · Yuxiao Dong · Hongyu Ren · Bowen Liu · Michele Catasta · Jure Leskovec -
2020 Poster: A Matrix Chernoff Bound for Markov Chains and Its Application to Co-occurrence Matrices »
Jiezhong Qiu · Chi Wang · Ben Liao · Richard Peng · Jie Tang -
2020 Poster: CogLTX: Applying BERT to Long Texts »
Ming Ding · Chang Zhou · Hongxia Yang · Jie Tang -
2019 : Federated Learning for Recommendation Systems »
Qiang Yang -
2018 Poster: Learning to Multitask »
Yu Zhang · Ying Wei · Qiang Yang -
2018 Poster: Bandit Learning with Implicit Feedback »
Yi Qi · Qingyun Wu · Hongning Wang · Jie Tang · Maosong Sun -
2015 : Transitive Transfer Learning »
Qiang Yang -
2012 Poster: Action-Model Based Multi-agent Plan Recognition »
Hankz Hankui Zhuo · Qiang Yang · Subbarao Kambhampati -
2009 Workshop: Transfer Learning for Structured Data »
Sinno Jialin Pan · Ivor W Tsang · Le Song · Karsten Borgwardt · Qiang Yang -
2008 Poster: Translated Learning »
Wenyuan Dai · Yuqiang Chen · Gui-Rong Xue · Qiang Yang · Yong Yu -
2008 Spotlight: Translated Learning »
Wenyuan Dai · Yuqiang Chen · Gui-Rong Xue · Qiang Yang · Yong Yu