Timezone: »
Discrete latent spaces in variational autoencoders have been shown to effectively capture the data distribution for many real-world problems such as natural language understanding, human intent prediction, and visual scene representation. However, discrete latent spaces need to be sufficiently large to capture the complexities of real-world data, rendering downstream tasks computationally challenging. For instance, performing motion planning in a high-dimensional latent representation of the environment could be intractable. We consider the problem of sparsifying the discrete latent space of a trained conditional variational autoencoder, while preserving its learned multimodality. As a post hoc latent space reduction technique, we use evidential theory to identify the latent classes that receive direct evidence from a particular input condition and filter out those that do not. Experiments on diverse tasks, such as image generation and human behavior prediction, demonstrate the effectiveness of our proposed technique at reducing the discrete latent sample space size of a model while maintaining its learned multimodality.
Author Information
Masha Itkina (Stanford University)
Boris Ivanovic (Stanford University)
Ransalu Senanayake (Stanford University)
Mykel J Kochenderfer (Stanford University)
Marco Pavone (Stanford University)
More from the Same Authors
-
2021 : WildfireDB: An Open-Source Dataset Connecting Wildfire Occurrence with Relevant Determinants »
Samriddhi Singla · Ayan Mukhopadhyay · Michael Wilbur · Tina Diao · Vinayak Gajjewar · Ahmed Eldawy · Mykel J Kochenderfer · Ross Shachter · Abhishek Dubey -
2021 : Occlusion-Aware Crowd Navigation Using People as Sensors »
Ye-Ji Mun · Masha Itkina · Katherine Driggs-Campbell -
2022 : A POMDP Model for Safe Geological Carbon Sequestration »
Anthony Corso · Yizheng Wang · Markus Zechner · Jef Caers · Mykel J Kochenderfer -
2022 : Foundation Models for Semantic Novelty in Reinforcement Learning »
Tarun Gupta · Peter Karkus · Tong Che · Danfei Xu · Marco Pavone -
2022 : DiffStack: A Differentiable and Modular Control Stack for Autonomous Vehicles »
Peter Karkus · Boris Ivanovic · Shie Mannor · Marco Pavone -
2022 : Robust Trajectory Prediction against Adversarial Attacks »
Yulong Cao · Danfei Xu · Xinshuo Weng · Zhuoqing Morley Mao · Anima Anandkumar · Chaowei Xiao · Marco Pavone -
2022 : AdvDO: Realistic Adversarial Attacks for Trajectory Prediction »
Yulong Cao · Chaowei Xiao · Anima Anandkumar · Danfei Xu · Marco Pavone -
2022 : Conformal Semantic Keypoint Detection with Statistical Guarantees »
Heng Yang · Marco Pavone -
2022 : Fifteen-minute Competition Overview Video »
Nathan Drenkow · Raman Arora · Gino Perrotta · Todd Neller · Ryan Gardner · Mykel J Kochenderfer · Jared Markowitz · Corey Lowman · Casey Richardson · Bo Li · Bart Paulhamus · Ashley J Llorens · Andrew Newman -
2022 : Expanding the Deployment Envelope of Behavior Prediction via Adaptive Meta-Learning »
Boris Ivanovic · James Harrison · Marco Pavone -
2022 : Graph Q-Learning for Combinatorial Optimization »
Victoria Magdalena Dax · Jiachen Li · Kevin Leahy · Mykel J Kochenderfer -
2022 : Conformal Semantic Keypoint Detection with Statistical Guarantees »
Heng Yang · Marco Pavone -
2022 : Invited Talk: Marco Pavone »
Marco Pavone -
2022 : Graph Q-Learning for Combinatorial Optimization »
Victoria Magdalena Dax · Jiachen Li · Kevin Leahy · Mykel J Kochenderfer -
2022 Workshop: 5th Robot Learning Workshop: Trustworthy Robotics »
Alex Bewley · Roberto Calandra · Anca Dragan · Igor Gilitschenski · Emily Hannigan · Masha Itkina · Hamidreza Kasaei · Jens Kober · Danica Kragic · Nathan Lambert · Julien PEREZ · Fabio Ramos · Ransalu Senanayake · Jonathan Tompson · Vincent Vanhoucke · Markus Wulfmeier -
2022 Competition: Reconnaissance Blind Chess: An Unsolved Challenge for Multi-Agent Decision Making Under Uncertainty »
Ryan Gardner · Gino Perrotta · Corey Lowman · Casey Richardson · Andrew Newman · Jared Markowitz · Nathan Drenkow · Bart Paulhamus · Ashley J Llorens · Todd Neller · Raman Arora · Bo Li · Mykel J Kochenderfer -
2022 Poster: Collaborative Decision Making Using Action Suggestions »
Dylan Asmar · Mykel J Kochenderfer -
2022 Poster: Interaction Modeling with Multiplex Attention »
Fan-Yun Sun · Isaac Kauvar · Ruohan Zhang · Jiachen Li · Mykel J Kochenderfer · Jiajun Wu · Nick Haber -
2022 Poster: Risk-Driven Design of Perception Systems »
Anthony Corso · Sydney Katz · Craig Innes · Xin Du · Subramanian Ramamoorthy · Mykel J Kochenderfer -
2021 Workshop: 4th Robot Learning Workshop: Self-Supervised and Lifelong Learning »
Alex Bewley · Masha Itkina · Hamidreza Kasaei · Jens Kober · Nathan Lambert · Julien PEREZ · Ransalu Senanayake · Vincent Vanhoucke · Markus Wulfmeier · Igor Gilitschenski -
2021 Poster: Data Sharing and Compression for Cooperative Networked Control »
Jiangnan Cheng · Marco Pavone · Sachin Katti · Sandeep Chinchali · Ao Tang -
2021 Poster: Evidential Softmax for Sparse Multimodal Distributions in Deep Generative Models »
Phil Chen · Masha Itkina · Ransalu Senanayake · Mykel J Kochenderfer -
2021 : Reconnaissance Blind Chess + Q&A »
Ryan Gardner · Gino Perrotta · Corey Lowman · Casey Richardson · Andrew Newman · Jared Markowitz · Nathan Drenkow · Bart Paulhamus · Ashley J Llorens · Todd Neller · Raman Arora · Bo Li · Mykel J Kochenderfer -
2020 Workshop: 3rd Robot Learning Workshop »
Masha Itkina · Alex Bewley · Roberto Calandra · Igor Gilitschenski · Julien PEREZ · Ransalu Senanayake · Markus Wulfmeier · Vincent Vanhoucke -
2020 : Introduction »
Masha Itkina -
2020 Poster: Handling Missing Data with Graph Representation Learning »
Jiaxuan You · Xiaobai Ma · Yi Ding · Mykel J Kochenderfer · Jure Leskovec -
2020 Poster: Continuous Meta-Learning without Tasks »
James Harrison · Apoorva Sharma · Chelsea Finn · Marco Pavone -
2020 Poster: Provably Efficient Reward-Agnostic Navigation with Linear Value Iteration »
Andrea Zanette · Alessandro Lazaric · Mykel J Kochenderfer · Emma Brunskill -
2019 : Marco Pavone: On Safe and Efficient Human-robot Interactions via Multi-modal Intent Modeling and Reachability-based Safety Assurance »
Marco Pavone -
2019 : Poster session »
Sebastian Farquhar · Erik Daxberger · Andreas Look · Matt Benatan · Ruiyi Zhang · Marton Havasi · Fredrik Gustafsson · James A Brofos · Nabeel Seedat · Micha Livne · Ivan Ustyuzhaninov · Adam Cobb · Felix D McGregor · Patrick McClure · Tim R. Davidson · Gaurush Hiranandani · Sanjeev Arora · Masha Itkina · Didrik Nielsen · William Harvey · Matias Valdenegro-Toro · Stefano Peluchetti · Riccardo Moriconi · Tianyu Cui · Vaclav Smidl · Taylan Cemgil · Jack Fitzsimons · He Zhao · · mariana vargas vieyra · Apratim Bhattacharyya · Rahul Sharma · Geoffroy Dubourg-Felonneau · Jonathan Warrell · Slava Voloshynovskiy · Mihaela Rosca · Jiaming Song · Andrew Ross · Homa Fashandi · Ruiqi Gao · Hooshmand Shokri Razaghi · Joshua Chang · Zhenzhong Xiao · Vanessa Boehm · Giorgio Giannone · Ranganath Krishnan · Joe Davison · Arsenii Ashukha · Jeremiah Liu · Sicong (Sheldon) Huang · Evgenii Nikishin · Sunho Park · Nilesh Ahuja · Mahesh Subedar · · Artyom Gadetsky · Jhosimar Arias Figueroa · Tim G. J. Rudner · Waseem Aslam · Adrián Csiszárik · John Moberg · Ali Hebbal · Kathrin Grosse · Pekka Marttinen · Bang An · Hlynur Jónsson · Samuel Kessler · Abhishek Kumar · Mikhail Figurnov · Omesh Tickoo · Steindor Saemundsson · Ari Heljakka · Dániel Varga · Niklas Heim · Simone Rossi · Max Laves · Waseem Gharbieh · Nicholas Roberts · Luis Armando Pérez Rey · Matthew Willetts · Prithvijit Chakrabarty · Sumedh Ghaisas · Carl Shneider · Wray Buntine · Kamil Adamczewski · Xavier Gitiaux · Suwen Lin · Hao Fu · Gunnar Rätsch · Aidan Gomez · Erik Bodin · Dinh Phung · Lennart Svensson · Juliano Tusi Amaral Laganá Pinto · Milad Alizadeh · Jianzhun Du · Kevin Murphy · Beatrix Benkő · Shashaank Vattikuti · Jonathan Gordon · Christopher Kanan · Sontje Ihler · Darin Graham · Michael Teng · Louis Kirsch · Tomas Pevny · Taras Holotyak -
2019 Poster: High-Dimensional Optimization in Adaptive Random Subspaces »
Jonathan Lacotte · Mert Pilanci · Marco Pavone -
2019 Poster: Almost Horizon-Free Structure-Aware Best Policy Identification with a Generative Model »
Andrea Zanette · Mykel J Kochenderfer · Emma Brunskill -
2019 Poster: Limiting Extrapolation in Linear Approximate Value Iteration »
Andrea Zanette · Alessandro Lazaric · Mykel J Kochenderfer · Emma Brunskill -
2018 : Panel »
Yimeng Zhang · Alfredo Canziani · Marco Pavone · Dorsa Sadigh · Kurt Keutzer -
2018 : Invited Talk: Marco Pavone, Stanford »
Marco Pavone -
2018 Workshop: Modeling and decision-making in the spatiotemporal domain »
Ransalu Senanayake · Neal Jean · Fabio Ramos · Girish Chowdhary -
2018 Poster: Deep Dynamical Modeling and Control of Unsteady Fluid Flows »
Jeremy Morton · Antony Jameson · Mykel J Kochenderfer · Freddie Witherden -
2018 Poster: Amortized Inference Regularization »
Rui Shu · Hung Bui · Shengjia Zhao · Mykel J Kochenderfer · Stefano Ermon -
2017 : 6 Spotlight Talks (3 min each) »
Mennatullah Siam · Mohit Prabhushankar · Priyam Parashar · Mustafa Mukadam · hengshuai yao · Ransalu Senanayake -
2016 : Building and Validating the AI behind the Next-Generation Aircraft Collision Avoidance System »
Mykel J Kochenderfer -
2016 Poster: Spatio-Temporal Hilbert Maps for Continuous Occupancy Representation in Dynamic Environments »
Ransalu Senanayake · Lionel Ott · Simon O'Callaghan · Fabio Ramos -
2015 Poster: Risk-Sensitive and Robust Decision-Making: a CVaR Optimization Approach »
Yinlam Chow · Aviv Tamar · Shie Mannor · Marco Pavone