Timezone: »

 
Poster
Causal analysis of Covid-19 Spread in Germany
Atalanti Mastakouri · Bernhard Schölkopf

Wed Dec 09 09:00 AM -- 11:00 AM (PST) @ Poster Session 3 #974

In this work, we study the causal relations among German regions in terms of the spread of Covid-19 since the beginning of the pandemic, taking into account the restriction policies that were applied by the different federal states. We loose a strictly formulated assumption for a causal feature selection method for time series data, robust to latent confounders, which we subsequently apply on Covid-19 case numbers. We present findings about the spread of the virus in Germany and the causal impact of restriction measures, discussing the role of various policies in containing the spread. Since our results are based on rather limited target time series (only the numbers of reported cases), care should be exercised in interpreting them. However, it is encouraging that already such limited data seems to contain causal signals. This suggests that as more data becomes available, our causal approach may contribute towards meaningful causal analysis of political interventions on the development of Covid-19, and thus also towards the development of rational and data-driven methodologies for choosing interventions.

Author Information

Atalanti Mastakouri (Max Planck Institute for Intelligent Systems)
Bernhard Schölkopf (MPI for Intelligent Systems, Tübingen)

Bernhard Scholkopf received degrees in mathematics (London) and physics (Tubingen), and a doctorate in computer science from the Technical University Berlin. He has researched at AT&T Bell Labs, at GMD FIRST, Berlin, at the Australian National University, Canberra, and at Microsoft Research Cambridge (UK). In 2001, he was appointed scientific member of the Max Planck Society and director at the MPI for Biological Cybernetics; in 2010 he founded the Max Planck Institute for Intelligent Systems. For further information, see www.kyb.tuebingen.mpg.de/~bs.

More from the Same Authors