Timezone: »
This paper investigates the geometrical properties of real world games (e.g. Tic-Tac-Toe, Go, StarCraft II). We hypothesise that their geometrical structure resembles a spinning top, with the upright axis representing transitive strength, and the radial axis representing the non-transitive dimension, which corresponds to the number of cycles that exist at a particular transitive strength. We prove the existence of this geometry for a wide class of real world games by exposing their temporal nature. Additionally, we show that this unique structure also has consequences for learning - it clarifies why populations of strategies are necessary for training of agents, and how population size relates to the structure of the game. Finally, we empirically validate these claims by using a selection of nine real world two-player zero-sum symmetric games, showing 1) the spinning top structure is revealed and can be easily reconstructed by using a new method of Nash clustering to measure the interaction between transitive and cyclical strategy behaviour, and 2) the effect that population size has on the convergence of learning in these games.
Author Information
Wojciech Czarnecki (DeepMind)
Gauthier Gidel (Mila)
I am a Ph.D student supervised by Simon Lacoste-Julien, I graduated from ENS Ulm and Université Paris-Saclay. I was a visiting PhD student at Sierra. I also worked for 6 months as a freelance Data Scientist for Monsieur Drive (Acquired by Criteo) and I recently co-founded a startup called Krypto. I'm currently pursuing my PhD at Mila. My work focuses on optimization applied to machine learning. More details can be found in my resume. My research is to develop new optimization algorithms and understand the role of optimization in the learning procedure, in short, learn faster and better. I identify to the field of machine learning (NIPS, ICML, AISTATS and ICLR) and optimization (SIAM OP)
Brendan Tracey (DeepMind)
Karl Tuyls (DeepMind)
Shayegan Omidshafiei (DeepMind)
David Balduzzi (XTX Markets)
Max Jaderberg (DeepMind)
More from the Same Authors
-
2021 Spotlight: A single gradient step finds adversarial examples on random two-layers neural networks »
Sebastien Bubeck · Yeshwanth Cherapanamjeri · Gauthier Gidel · Remi Tachet des Combes -
2021 : On the convergence of stochastic extragradient for bilinear games using restarted iteration averaging »
Chris Junchi Li · Yaodong Yu · Nicolas Loizou · Gauthier Gidel · Yi Ma · Nicolas Le Roux perso · Michael Jordan -
2021 : On the convergence of stochastic extragradient for bilinear games using restarted iteration averaging »
Chris Junchi Li · Yaodong Yu · Nicolas Loizou · Gauthier Gidel · Yi Ma · Nicolas Le Roux perso · Michael Jordan -
2022 : Nesterov Meets Optimism: Rate-Optimal Optimistic-Gradient-Based Method for Stochastic Bilinearly-Coupled Minimax Optimization »
Chris Junchi Li · Angela Yuan · Gauthier Gidel · Michael Jordan -
2022 : Momentum Extragradient is Optimal for Games with Cross-Shaped Spectrum »
Junhyung Lyle Kim · Gauthier Gidel · Anastasios Kyrillidis · Fabian Pedregosa -
2022 : Performative Prediction with Neural Networks »
Mehrnaz Mofakhami · Ioannis Mitliagkas · Gauthier Gidel -
2022 : Multi-Agent Reinforcement Learning for Microprocessor Design Space Exploration »
Srivatsan Krishnan · Natasha Jaques · Shayegan Omidshafiei · Dan Zhang · Izzeddin Gur · Vijay Janapa Reddi · Aleksandra Faust -
2022 : Concept-based Understanding of Emergent Multi-Agent Behavior »
Niko Grupen · Shayegan Omidshafiei · Natasha Jaques · Been Kim -
2022 : Multi-Agent Reinforcement Learning for Microprocessor Design Space Exploration »
Srivatsan Krishnan · Natasha Jaques · Shayegan Omidshafiei · Dan Zhang · Izzeddin Gur · Vijay Janapa Reddi · Aleksandra Faust -
2022 Poster: Turbocharging Solution Concepts: Solving NEs, CEs and CCEs with Neural Equilibrium Solvers »
Luke Marris · Ian Gemp · Thomas Anthony · Andrea Tacchetti · Siqi Liu · Karl Tuyls -
2022 Poster: Clipped Stochastic Methods for Variational Inequalities with Heavy-Tailed Noise »
Eduard Gorbunov · Marina Danilova · David Dobre · Pavel Dvurechenskii · Alexander Gasnikov · Gauthier Gidel -
2022 Poster: The Curse of Unrolling: Rate of Differentiating Through Optimization »
Damien Scieur · Gauthier Gidel · Quentin Bertrand · Fabian Pedregosa -
2022 Poster: Beyond L1: Faster and Better Sparse Models with skglm »
Quentin Bertrand · Quentin Klopfenstein · Pierre-Antoine Bannier · Gauthier Gidel · Mathurin Massias -
2022 Poster: Beyond Rewards: a Hierarchical Perspective on Offline Multiagent Behavioral Analysis »
Shayegan Omidshafiei · Andrei Kapishnikov · Yannick Assogba · Lucas Dixon · Been Kim -
2022 Poster: Last-Iterate Convergence of Optimistic Gradient Method for Monotone Variational Inequalities »
Eduard Gorbunov · Adrien Taylor · Gauthier Gidel -
2021 Poster: Stochastic Gradient Descent-Ascent and Consensus Optimization for Smooth Games: Convergence Analysis under Expected Co-coercivity »
Nicolas Loizou · Hugo Berard · Gauthier Gidel · Ioannis Mitliagkas · Simon Lacoste-Julien -
2021 Poster: A single gradient step finds adversarial examples on random two-layers neural networks »
Sebastien Bubeck · Yeshwanth Cherapanamjeri · Gauthier Gidel · Remi Tachet des Combes -
2020 Poster: Discovering Reinforcement Learning Algorithms »
Junhyuk Oh · Matteo Hessel · Wojciech Czarnecki · Zhongwen Xu · Hado van Hasselt · Satinder Singh · David Silver -
2020 Tutorial: (Track3) Designing Learning Dynamics Q&A »
Marta Garnelo · David Balduzzi · Wojciech Czarnecki -
2020 Poster: Adversarial Example Games »
Joey Bose · Gauthier Gidel · Hugo Berard · Andre Cianflone · Pascal Vincent · Simon Lacoste-Julien · Will Hamilton -
2020 Tutorial: (Track3) Designing Learning Dynamics »
Marta Garnelo · David Balduzzi · Wojciech Czarnecki -
2019 : Invited talk: David Balduzzi (DeepMind »
David Balduzzi -
2019 Workshop: Bridging Game Theory and Deep Learning »
Ioannis Mitliagkas · Gauthier Gidel · Niao He · Reyhane Askari Hemmat · N H · Nika Haghtalab · Simon Lacoste-Julien -
2019 Poster: Reducing Noise in GAN Training with Variance Reduced Extragradient »
Tatjana Chavdarova · Gauthier Gidel · François Fleuret · Simon Lacoste-Julien -
2019 Poster: Multiagent Evaluation under Incomplete Information »
Mark Rowland · Shayegan Omidshafiei · Karl Tuyls · Julien Perolat · Michal Valko · Georgios Piliouras · Remi Munos -
2019 Spotlight: Multiagent Evaluation under Incomplete Information »
Mark Rowland · Shayegan Omidshafiei · Karl Tuyls · Julien Perolat · Michal Valko · Georgios Piliouras · Remi Munos -
2019 Poster: Implicit Regularization of Discrete Gradient Dynamics in Linear Neural Networks »
Gauthier Gidel · Francis Bach · Simon Lacoste-Julien -
2019 Poster: Painless Stochastic Gradient: Interpolation, Line-Search, and Convergence Rates »
Sharan Vaswani · Aaron Mishkin · Issam Laradji · Mark Schmidt · Gauthier Gidel · Simon Lacoste-Julien -
2019 Poster: Non-normal Recurrent Neural Network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics »
Giancarlo Kerg · Kyle Goyette · Maximilian Puelma Touzel · Gauthier Gidel · Eugene Vorontsov · Yoshua Bengio · Guillaume Lajoie -
2018 : Opening remarks »
Simon Lacoste-Julien · Gauthier Gidel -
2018 Workshop: Smooth Games Optimization and Machine Learning »
Simon Lacoste-Julien · Ioannis Mitliagkas · Gauthier Gidel · Vasilis Syrgkanis · Eva Tardos · Leon Bottou · Sebastian Nowozin -
2018 Poster: Actor-Critic Policy Optimization in Partially Observable Multiagent Environments »
Sriram Srinivasan · Marc Lanctot · Vinicius Zambaldi · Julien Perolat · Karl Tuyls · Remi Munos · Michael Bowling -
2018 Poster: Inequity aversion improves cooperation in intertemporal social dilemmas »
Edward Hughes · Joel Leibo · Matthew Phillips · Karl Tuyls · Edgar Dueñez-Guzman · Antonio García Castañeda · Iain Dunning · Tina Zhu · Kevin McKee · Raphael Koster · Heather Roff · Thore Graepel -
2018 Poster: Re-evaluating evaluation »
David Balduzzi · Karl Tuyls · Julien Perolat · Thore Graepel -
2017 Poster: A Unified Game-Theoretic Approach to Multiagent Reinforcement Learning »
Marc Lanctot · Vinicius Zambaldi · Audrunas Gruslys · Angeliki Lazaridou · Karl Tuyls · Julien Perolat · David Silver · Thore Graepel -
2017 Poster: Distral: Robust multitask reinforcement learning »
Yee Teh · Victor Bapst · Wojciech Czarnecki · John Quan · James Kirkpatrick · Raia Hadsell · Nicolas Heess · Razvan Pascanu -
2017 Poster: Sobolev Training for Neural Networks »
Wojciech Czarnecki · Simon Osindero · Max Jaderberg · Grzegorz Swirszcz · Razvan Pascanu -
2016 Poster: Unsupervised Learning of 3D Structure from Images »
Danilo Jimenez Rezende · S. M. Ali Eslami · Shakir Mohamed · Peter Battaglia · Max Jaderberg · Nicolas Heess -
2015 Poster: Spatial Transformer Networks »
Max Jaderberg · Karen Simonyan · Andrew Zisserman · koray kavukcuoglu -
2015 Spotlight: Spatial Transformer Networks »
Max Jaderberg · Karen Simonyan · Andrew Zisserman · koray kavukcuoglu