Timezone: »
Continually learning new skills is important for intelligent systems, yet standard deep learning methods suffer from catastrophic forgetting of the past. Recent works address this with weight regularisation. Functional regularisation, although computationally expensive, is expected to perform better, but rarely does so in practice. In this paper, we fix this issue by using a new functional-regularisation approach that utilises a few memorable past examples crucial to avoid forgetting. By using a Gaussian Process formulation of deep networks, our approach enables training in weight-space while identifying both the memorable past and a functional prior. Our method achieves state-of-the-art performance on standard benchmarks and opens a new direction for life-long learning where regularisation and memory-based methods are naturally combined.
Author Information
Pingbo Pan (University of Technology Sydney)
Siddharth Swaroop (University of Cambridge)
Alexander Immer (EPFL)
Runa Eschenhagen (University of Osnabrueck)
Richard Turner (University of Cambridge)
Emtiyaz Khan (RIKEN, Tokyo)
Related Events (a corresponding poster, oral, or spotlight)
-
2020 Oral: Continual Deep Learning by Functional Regularisation of Memorable Past »
Wed Dec 9th 02:00 -- 02:15 PM Room Orals & Spotlights: Continual/Meta/Misc Learning
More from the Same Authors
-
2020 Poster: Efficient Low Rank Gaussian Variational Inference for Neural Networks »
Marcin Tomczak · Siddharth Swaroop · Richard Turner -
2020 Poster: Meta-Learning Stationary Stochastic Process Prediction with Convolutional Neural Processes »
Andrew Foong · Wessel Bruinsma · Jonathan Gordon · Yann Dubois · James Requeima · Richard Turner -
2020 Poster: On the Expressiveness of Approximate Inference in Bayesian Neural Networks »
Andrew Foong · David Burt · Yingzhen Li · Richard Turner -
2020 Poster: VAEM: a Deep Generative Model for Heterogeneous Mixed Type Data »
Chao Ma · Sebastian Tschiatschek · Richard Turner · José Miguel Hernández-Lobato · Cheng Zhang -
2019 Poster: Icebreaker: Element-wise Efficient Information Acquisition with a Bayesian Deep Latent Gaussian Model »
Wenbo Gong · Sebastian Tschiatschek · Sebastian Nowozin · Richard Turner · José Miguel Hernández-Lobato · Cheng Zhang -
2019 Poster: Practical Deep Learning with Bayesian Principles »
Kazuki Osawa · Siddharth Swaroop · Mohammad Emtiyaz Khan · Anirudh Jain · Runa Eschenhagen · Richard Turner · Rio Yokota -
2018 Poster: Infinite-Horizon Gaussian Processes »
Arno Solin · James Hensman · Richard Turner -
2018 Poster: SLANG: Fast Structured Covariance Approximations for Bayesian Deep Learning with Natural Gradient »
Aaron Mishkin · Frederik Kunstner · Didrik Nielsen · Mark Schmidt · Mohammad Emtiyaz Khan -
2018 Poster: Geometrically Coupled Monte Carlo Sampling »
Mark Rowland · Krzysztof Choromanski · François Chalus · Aldo Pacchiano · Tamas Sarlos · Richard Turner · Adrian Weller -
2018 Spotlight: Geometrically Coupled Monte Carlo Sampling »
Mark Rowland · Krzysztof Choromanski · François Chalus · Aldo Pacchiano · Tamas Sarlos · Richard Turner · Adrian Weller -
2017 Poster: Streaming Sparse Gaussian Process Approximations »
Thang Bui · Cuong Nguyen · Richard Turner -
2017 Poster: Interpolated Policy Gradient: Merging On-Policy and Off-Policy Gradient Estimation for Deep Reinforcement Learning »
Shixiang (Shane) Gu · Timothy Lillicrap · Richard Turner · Zoubin Ghahramani · Bernhard Schölkopf · Sergey Levine -
2016 Poster: Rényi Divergence Variational Inference »
Yingzhen Li · Richard Turner -
2015 Poster: Neural Adaptive Sequential Monte Carlo »
Shixiang (Shane) Gu · Zoubin Ghahramani · Richard Turner -
2015 Poster: Learning Stationary Time Series using Gaussian Processes with Nonparametric Kernels »
Felipe Tobar · Thang Bui · Richard Turner -
2015 Poster: Stochastic Expectation Propagation »
Yingzhen Li · José Miguel Hernández-Lobato · Richard Turner -
2015 Spotlight: Learning Stationary Time Series using Gaussian Processes with Nonparametric Kernels »
Felipe Tobar · Thang Bui · Richard Turner -
2015 Spotlight: Stochastic Expectation Propagation »
Yingzhen Li · José Miguel Hernández-Lobato · Richard Turner -
2014 Poster: Tree-structured Gaussian Process Approximations »
Thang Bui · Richard Turner -
2014 Spotlight: Tree-structured Gaussian Process Approximations »
Thang Bui · Richard Turner -
2011 Poster: Probabilistic amplitude and frequency demodulation »
Richard Turner · Maneesh Sahani -
2011 Spotlight: Probabilistic amplitude and frequency demodulation »
Richard Turner · Maneesh Sahani -
2009 Poster: Occlusive Components Analysis »
Jörg Lücke · Richard Turner · Maneesh Sahani · Marc Henniges -
2007 Workshop: Beyond Simple Cells: Probabilistic Models for Visual Cortical Processing »
Richard Turner · Pietro Berkes · Maneesh Sahani -
2007 Poster: Modeling Natural Sounds with Modulation Cascade Processes »
Richard Turner · Maneesh Sahani -
2007 Poster: On Sparsity and Overcompleteness in Image Models »
Pietro Berkes · Richard Turner · Maneesh Sahani