Timezone: »
Author Information
Pierre Perrault (INRIA - ENS Paris Saclay)
Etienne Boursier (ENS Paris Saclay)
Michal Valko (DeepMind)
Michal is a machine learning scientist in DeepMind Paris, tenured researcher at Inria, and the lecturer of the master course Graphs in Machine Learning at l'ENS Paris-Saclay. Michal is primarily interested in designing algorithms that would require as little human supervision as possible. This means 1) reducing the “intelligence” that humans need to input into the system and 2) minimizing the data that humans need to spend inspecting, classifying, or “tuning” the algorithms. That is why he is working on methods and settings that are able to deal with minimal feedback, such as deep reinforcement learning, bandit algorithms, or self-supervised learning. Michal is actively working on represenation learning and building worlds models. He is also working on deep (reinforcement) learning algorithm that have some theoretical underpinning. He has also worked on sequential algorithms with structured decisions where exploiting the structure leads to provably faster learning. He received his Ph.D. in 2011 from the University of Pittsburgh under the supervision of Miloš Hauskrecht and after was a postdoc of Rémi Munos before taking a permanent position at Inria in 2012.
Vianney Perchet (ENSAE & Criteo AI Lab)
More from the Same Authors
-
2021 Spotlight: Stochastic Shortest Path: Minimax, Parameter-Free and Towards Horizon-Free Regret »
Jean Tarbouriech · Runlong Zhou · Simon Du · Matteo Pirotta · Michal Valko · Alessandro Lazaric -
2021 Spotlight: Online Sign Identification: Minimization of the Number of Errors in Thresholding Bandits »
Reda Ouhamma · Odalric-Ambrym Maillard · Vianney Perchet -
2021 Spotlight: A Provably Efficient Sample Collection Strategy for Reinforcement Learning »
Jean Tarbouriech · Matteo Pirotta · Michal Valko · Alessandro Lazaric -
2021 Spotlight: Decentralized Learning in Online Queuing Systems »
Flore Sentenac · Etienne Boursier · Vianney Perchet -
2022 Poster: When Combinatorial Thompson Sampling meets Approximation Regret »
Pierre Perrault -
2022 : Curiosity in Hindsight »
Daniel Jarrett · Corentin Tallec · Florent Altché · Thomas Mesnard · Remi Munos · Michal Valko -
2023 Poster: Advice querying under budget constraint for online algorithms »
Ziyad Benomar · Vianney Perchet -
2023 Poster: Trading-off price for data quality to achieve fair online allocation »
Mathieu Molina · Nicolas Gast · Patrick Loiseau · Vianney Perchet -
2023 Poster: Penalising the biases in norm regularisation enforces sparsity »
Etienne Boursier · Nicolas Flammarion -
2023 Poster: Model-free Posterior Sampling via Learning Rate Randomization »
Daniil Tiapkin · Denis Belomestny · Daniele Calandriello · Eric Moulines · Remi Munos · Alexey Naumov · Pierre Perrault · Michal Valko · Pierre Ménard -
2022 Spotlight: Optimistic Posterior Sampling for Reinforcement Learning with Few Samples and Tight Guarantees »
Daniil Tiapkin · Denis Belomestny · Daniele Calandriello · Eric Moulines · Remi Munos · Alexey Naumov · Mark Rowland · Michal Valko · Pierre Ménard -
2022 Poster: BYOL-Explore: Exploration by Bootstrapped Prediction »
Zhaohan Guo · Shantanu Thakoor · Miruna Pislar · Bernardo Avila Pires · Florent Altché · Corentin Tallec · Alaa Saade · Daniele Calandriello · Jean-Bastien Grill · Yunhao Tang · Michal Valko · Remi Munos · Mohammad Gheshlaghi Azar · Bilal Piot -
2022 Poster: Optimistic Posterior Sampling for Reinforcement Learning with Few Samples and Tight Guarantees »
Daniil Tiapkin · Denis Belomestny · Daniele Calandriello · Eric Moulines · Remi Munos · Alexey Naumov · Mark Rowland · Michal Valko · Pierre Ménard -
2022 Poster: Gradient flow dynamics of shallow ReLU networks for square loss and orthogonal inputs »
Etienne Boursier · Loucas PILLAUD-VIVIEN · Nicolas Flammarion -
2022 Poster: Active Labeling: Streaming Stochastic Gradients »
Vivien Cabannes · Francis Bach · Vianney Perchet · Alessandro Rudi -
2021 Oral: Drop, Swap, and Generate: A Self-Supervised Approach for Generating Neural Activity »
Ran Liu · Mehdi Azabou · Max Dabagia · Chi-Heng Lin · Mohammad Gheshlaghi Azar · Keith Hengen · Michal Valko · Eva Dyer -
2021 Poster: Drop, Swap, and Generate: A Self-Supervised Approach for Generating Neural Activity »
Ran Liu · Mehdi Azabou · Max Dabagia · Chi-Heng Lin · Mohammad Gheshlaghi Azar · Keith Hengen · Michal Valko · Eva Dyer -
2021 Poster: Local Differential Privacy for Regret Minimization in Reinforcement Learning »
Evrard Garcelon · Vianney Perchet · Ciara Pike-Burke · Matteo Pirotta -
2021 Poster: Learning in two-player zero-sum partially observable Markov games with perfect recall »
Tadashi Kozuno · Pierre Ménard · Remi Munos · Michal Valko -
2021 Poster: Stochastic Shortest Path: Minimax, Parameter-Free and Towards Horizon-Free Regret »
Jean Tarbouriech · Runlong Zhou · Simon Du · Matteo Pirotta · Michal Valko · Alessandro Lazaric -
2021 Poster: A Provably Efficient Sample Collection Strategy for Reinforcement Learning »
Jean Tarbouriech · Matteo Pirotta · Michal Valko · Alessandro Lazaric -
2021 Poster: ROI Maximization in Stochastic Online Decision-Making »
Nicolò Cesa-Bianchi · Tom Cesari · Yishay Mansour · Vianney Perchet -
2021 Poster: Making the most of your day: online learning for optimal allocation of time »
Etienne Boursier · Tristan Garrec · Vianney Perchet · Marco Scarsini -
2021 Poster: Stochastic Online Linear Regression: the Forward Algorithm to Replace Ridge »
Reda Ouhamma · Odalric-Ambrym Maillard · Vianney Perchet -
2021 Poster: Unifying Gradient Estimators for Meta-Reinforcement Learning via Off-Policy Evaluation »
Yunhao Tang · Tadashi Kozuno · Mark Rowland · Remi Munos · Michal Valko -
2021 Poster: Online Sign Identification: Minimization of the Number of Errors in Thresholding Bandits »
Reda Ouhamma · Odalric-Ambrym Maillard · Vianney Perchet -
2021 Poster: Online Matching in Sparse Random Graphs: Non-Asymptotic Performances of Greedy Algorithm »
Nathan Noiry · Vianney Perchet · Flore Sentenac -
2021 Poster: Decentralized Learning in Online Queuing Systems »
Flore Sentenac · Etienne Boursier · Vianney Perchet -
2020 Poster: Bootstrap Your Own Latent - A New Approach to Self-Supervised Learning »
Jean-Bastien Grill · Florian Strub · Florent Altché · Corentin Tallec · Pierre Richemond · Elena Buchatskaya · Carl Doersch · Bernardo Avila Pires · Daniel (Zhaohan) Guo · Mohammad Gheshlaghi Azar · Bilal Piot · koray kavukcuoglu · Remi Munos · Michal Valko -
2020 Poster: Sampling from a k-DPP without looking at all items »
Daniele Calandriello · Michal Derezinski · Michal Valko -
2020 Spotlight: Sampling from a k-DPP without looking at all items »
Daniele Calandriello · Michal Derezinski · Michal Valko -
2020 Oral: Bootstrap Your Own Latent - A New Approach to Self-Supervised Learning »
Jean-Bastien Grill · Florian Strub · Florent Altché · Corentin Tallec · Pierre Richemond · Elena Buchatskaya · Carl Doersch · Bernardo Avila Pires · Daniel (Zhaohan) Guo · Mohammad Gheshlaghi Azar · Bilal Piot · koray kavukcuoglu · Remi Munos · Michal Valko -
2020 Poster: Robustness of Community Detection to Random Geometric Perturbations »
Sandrine Peche · Vianney Perchet -
2020 Poster: Improved Sample Complexity for Incremental Autonomous Exploration in MDPs »
Jean Tarbouriech · Matteo Pirotta · Michal Valko · Alessandro Lazaric -
2020 Poster: Planning in Markov Decision Processes with Gap-Dependent Sample Complexity »
Anders Jonsson · Emilie Kaufmann · Pierre Menard · Omar Darwiche Domingues · Edouard Leurent · Michal Valko -
2020 Oral: Improved Sample Complexity for Incremental Autonomous Exploration in MDPs »
Jean Tarbouriech · Matteo Pirotta · Michal Valko · Alessandro Lazaric -
2019 Poster: Exact sampling of determinantal point processes with sublinear time preprocessing »
Michal Derezinski · Daniele Calandriello · Michal Valko -
2019 Poster: Planning in entropy-regularized Markov decision processes and games »
Jean-Bastien Grill · Omar Darwiche Domingues · Pierre Menard · Remi Munos · Michal Valko -
2019 Poster: Categorized Bandits »
Matthieu Jedor · Vianney Perchet · Jonathan Louedec -
2019 Poster: On two ways to use determinantal point processes for Monte Carlo integration »
Guillaume Gautier · Rémi Bardenet · Michal Valko -
2019 Poster: SIC-MMAB: Synchronisation Involves Communication in Multiplayer Multi-Armed Bandits »
Etienne Boursier · Vianney Perchet -
2019 Poster: Multiagent Evaluation under Incomplete Information »
Mark Rowland · Shayegan Omidshafiei · Karl Tuyls · Julien Perolat · Michal Valko · Georgios Piliouras · Remi Munos -
2019 Spotlight: Multiagent Evaluation under Incomplete Information »
Mark Rowland · Shayegan Omidshafiei · Karl Tuyls · Julien Perolat · Michal Valko · Georgios Piliouras · Remi Munos -
2019 Spotlight: SIC-MMAB: Synchronisation Involves Communication in Multiplayer Multi-Armed Bandits »
Etienne Boursier · Vianney Perchet -
2018 Poster: Optimistic optimization of a Brownian »
Jean-Bastien Grill · Michal Valko · Remi Munos -
2017 Poster: Online Influence Maximization under Independent Cascade Model with Semi-Bandit Feedback »
Zheng Wen · Branislav Kveton · Michal Valko · Sharan Vaswani -
2017 Poster: Efficient Second-Order Online Kernel Learning with Adaptive Embedding »
Daniele Calandriello · Alessandro Lazaric · Michal Valko -
2017 Poster: Fast Rates for Bandit Optimization with Upper-Confidence Frank-Wolfe »
Quentin Berthet · Vianney Perchet -
2017 Spotlight: Fast Rates for Bandit Optimization with Upper-Confidence Frank-Wolfe »
Quentin Berthet · Vianney Perchet -
2016 Poster: Blazing the trails before beating the path: Sample-efficient Monte-Carlo planning »
Jean-Bastien Grill · Michal Valko · Remi Munos -
2016 Oral: Blazing the trails before beating the path: Sample-efficient Monte-Carlo planning »
Jean-Bastien Grill · Michal Valko · Remi Munos -
2016 Poster: Combinatorial semi-bandit with known covariance »
Rémy Degenne · Vianney Perchet -
2015 Poster: Black-box optimization of noisy functions with unknown smoothness »
Jean-Bastien Grill · Michal Valko · Remi Munos · Remi Munos -
2014 Poster: Efficient learning by implicit exploration in bandit problems with side observations »
Tomáš Kocák · Gergely Neu · Michal Valko · Remi Munos -
2014 Poster: Extreme bandits »
Alexandra Carpentier · Michal Valko -
2014 Poster: Online combinatorial optimization with stochastic decision sets and adversarial losses »
Gergely Neu · Michal Valko