Timezone: »
Poster
Simple and Fast Algorithm for Binary Integer and Online Linear Programming
Xiaocheng Li · Chunlin Sun · Yinyu Ye
In this paper, we develop a simple and fast online algorithm for solving a class of binary integer linear programs (LPs) arisen in the general resource allocation problem. The algorithm requires only one single pass through the input data and is free of doing any matrix inversion. It can be viewed as both an approximate algorithm for solving binary integer LPs and a fast algorithm for solving online LP problems. The algorithm is inspired by an equivalent form of the dual problem of the relaxed LP and it essentially performs (one-pass) projected stochastic subgradient descent in the dual space. We analyze the algorithm under two different models, stochastic input and random permutation, with minimal technical assumptions on the input data. The algorithm achieves $O\left(m \sqrt{n}\right)$ expected regret under the stochastic input model and $O\left((m+\log n)\sqrt{n}\right)$ expected regret under the random permutation model, and it achieves $O(m \sqrt{n})$ expected constraint violation under both models, where $n$ is the number of decision variables and $m$ is the number of constraints. In addition, we employ the notion of permutational Rademacher complexity and derive regret bounds for two earlier online LP algorithms for comparison. Both algorithms improve the regret bound with a factor of $\sqrt{m}$ by paying more computational cost. Furthermore, we demonstrate how to convert the possibly infeasible solution to a feasible one through a randomized procedure. Numerical experiments illustrate the general applicability and effectiveness of the algorithms.
Author Information
Xiaocheng Li (Imperial College London)
Chunlin Sun (Stanford University)
Yinyu Ye (Standord)
More from the Same Authors
-
2022 : DIMENSION-REDUCED ADAPTIVE GRADIENT METHOD »
Jingyang Li · Pan Zhou · Kuangyu Ding · Kim-Chuan Toh · Yinyu Ye -
2022 : How Small Amount of Data Sharing Benefits Higher-Order Distributed Optimization and Learning »
Mingxi Zhu · Yinyu Ye -
2022 Poster: Non-stationary Bandits with Knapsacks »
Shang Liu · Jiashuo Jiang · Xiaocheng Li -
2022 Poster: Learning from Stochastically Revealed Preference »
John Birge · Xiaocheng Li · Chunlin Sun -
2021 : Online Learning via Linear Programming, Yinyu Ye »
Yinyu Ye -
2020 Poster: Conic Descent and its Application to Memory-efficient Optimization over Positive Semidefinite Matrices »
John Duchi · Oliver Hinder · Andrew Naber · Yinyu Ye -
2020 Poster: Distributionally Robust Local Non-parametric Conditional Estimation »
Viet Anh Nguyen · Fan Zhang · Jose Blanchet · Erick Delage · Yinyu Ye -
2019 : Poster and Coffee Break 2 »
Karol Hausman · Kefan Dong · Ken Goldberg · Lihong Li · Lin Yang · Lingxiao Wang · Lior Shani · Liwei Wang · Loren Amdahl-Culleton · Lucas Cassano · Marc Dymetman · Marc Bellemare · Marcin Tomczak · Margarita Castro · Marius Kloft · Marius-Constantin Dinu · Markus Holzleitner · Martha White · Mengdi Wang · Michael Jordan · Mihailo Jovanovic · Ming Yu · Minshuo Chen · Moonkyung Ryu · Muhammad Zaheer · Naman Agarwal · Nan Jiang · Niao He · Nikolaus Yasui · Nikos Karampatziakis · Nino Vieillard · Ofir Nachum · Olivier Pietquin · Ozan Sener · Pan Xu · Parameswaran Kamalaruban · Paul Mineiro · Paul Rolland · Philip Amortila · Pierre-Luc Bacon · Prakash Panangaden · Qi Cai · Qiang Liu · Quanquan Gu · Raihan Seraj · Richard Sutton · Rick Valenzano · Robert Dadashi · Rodrigo Toro Icarte · Roshan Shariff · Roy Fox · Ruosong Wang · Saeed Ghadimi · Samuel Sokota · Sean Sinclair · Sepp Hochreiter · Sergey Levine · Sergio Valcarcel Macua · Sham Kakade · Shangtong Zhang · Sheila McIlraith · Shie Mannor · Shimon Whiteson · Shuai Li · Shuang Qiu · Wai Lok Li · Siddhartha Banerjee · Sitao Luan · Tamer Basar · Thinh Doan · Tianhe Yu · Tianyi Liu · Tom Zahavy · Toryn Klassen · Tuo Zhao · Vicenç Gómez · Vincent Liu · Volkan Cevher · Wesley Suttle · Xiao-Wen Chang · Xiaohan Wei · Xiaotong Liu · Xingguo Li · Xinyi Chen · Xingyou Song · Yao Liu · YiDing Jiang · Yihao Feng · Yilun Du · Yinlam Chow · Yinyu Ye · Yishay Mansour · · Yonathan Efroni · Yongxin Chen · Yuanhao Wang · Bo Dai · Chen-Yu Wei · Harsh Shrivastava · Hongyang Zhang · Qinqing Zheng · SIDDHARTHA SATPATHI · Xueqing Liu · Andreu Vall -
2019 : Poster Spotlight 2 »
Aaron Sidford · Mengdi Wang · Lin Yang · Yinyu Ye · Zuyue Fu · Zhuoran Yang · Yongxin Chen · Zhaoran Wang · Ofir Nachum · Bo Dai · Ilya Kostrikov · Dale Schuurmans · Ziyang Tang · Yihao Feng · Lihong Li · Denny Zhou · Qiang Liu · Rodrigo Toro Icarte · Ethan Waldie · Toryn Klassen · Rick Valenzano · Margarita Castro · Simon Du · Sham Kakade · Ruosong Wang · Minshuo Chen · Tianyi Liu · Xingguo Li · Zhaoran Wang · Tuo Zhao · Philip Amortila · Doina Precup · Prakash Panangaden · Marc Bellemare -
2019 Poster: Interior-Point Methods Strike Back: Solving the Wasserstein Barycenter Problem »
DongDong Ge · Haoyue Wang · Zikai Xiong · Yinyu Ye -
2018 Poster: Near-Optimal Time and Sample Complexities for Solving Markov Decision Processes with a Generative Model »
Aaron Sidford · Mengdi Wang · Xian Wu · Lin Yang · Yinyu Ye