Timezone: »
In this paper, we introduce a discrete variant of the Meta-learning framework. Meta-learning aims at exploiting prior experience and data to improve performance on future tasks. By now, there exist numerous formulations for Meta-learning in the continuous domain. Notably, the Model-Agnostic Meta-Learning (MAML) formulation views each task as a continuous optimization problem and based on prior data learns a suitable initialization that can be adapted to new, unseen tasks after a few simple gradient updates. Motivated by this terminology, we propose a novel Meta-learning framework in the discrete domain where each task is equivalent to maximizing a set function under a cardinality constraint. Our approach aims at using prior data, i.e., previously visited tasks, to train a proper initial solution set that can be quickly adapted to a new task at a relatively low computational cost. This approach leads to (i) a personalized solution for each task, and (ii) significantly reduced computational cost at test time compared to the case where the solution is fully optimized once the new task is revealed. The training procedure is performed by solving a challenging discrete optimization problem for which we present deterministic and randomized algorithms. In the case where the tasks are monotone and submodular, we show strong theoretical guarantees for our proposed methods even though the training objective may not be submodular. We also demonstrate the effectiveness of our framework on two real-world problem instances where we observe that our methods lead to a significant reduction in computational complexity in solving the new tasks while incurring a small performance loss compared to when the tasks are fully optimized.
Author Information
Arman Adibi (University of Pennsylvania)
Aryan Mokhtari (UT Austin)
Hamed Hassani (UPenn)
More from the Same Authors
-
2022 : Conditional gradient-based method for bilevel optimization with convex lower-level problem »
Ruichen Jiang · Nazanin Abolfazli · Aryan Mokhtari · Erfan Yazdandoost Hamedani -
2022 : Statistical and Computational Complexities of BFGS Quasi-Newton Method for Generalized Linear Models »
Qiujiang Jin · Aryan Mokhtari · Nhat Ho · Tongzheng Ren -
2022 Poster: Collaborative Learning of Discrete Distributions under Heterogeneity and Communication Constraints »
Xinmeng Huang · Donghwan Lee · Edgar Dobriban · Hamed Hassani -
2022 Poster: Probable Domain Generalization via Quantile Risk Minimization »
Cian Eastwood · Alexander Robey · Shashank Singh · Julius von Kügelgen · Hamed Hassani · George J. Pappas · Bernhard Schölkopf -
2022 Poster: FedAvg with Fine Tuning: Local Updates Lead to Representation Learning »
Liam Collins · Hamed Hassani · Aryan Mokhtari · Sanjay Shakkottai -
2022 Poster: Collaborative Linear Bandits with Adversarial Agents: Near-Optimal Regret Bounds »
Aritra Mitra · Arman Adibi · George J. Pappas · Hamed Hassani -
2021 Poster: Exploiting Local Convergence of Quasi-Newton Methods Globally: Adaptive Sample Size Approach »
Qiujiang Jin · Aryan Mokhtari -
2021 Poster: Generalization of Model-Agnostic Meta-Learning Algorithms: Recurring and Unseen Tasks »
Alireza Fallah · Aryan Mokhtari · Asuman Ozdaglar -
2021 Poster: On the Convergence Theory of Debiased Model-Agnostic Meta-Reinforcement Learning »
Alireza Fallah · Kristian Georgiev · Aryan Mokhtari · Asuman Ozdaglar -
2020 Poster: Sinkhorn Natural Gradient for Generative Models »
Zebang Shen · Zhenfu Wang · Alejandro Ribeiro · Hamed Hassani -
2020 Poster: Sinkhorn Barycenter via Functional Gradient Descent »
Zebang Shen · Zhenfu Wang · Alejandro Ribeiro · Hamed Hassani -
2020 Spotlight: Sinkhorn Natural Gradient for Generative Models »
Zebang Shen · Zhenfu Wang · Alejandro Ribeiro · Hamed Hassani -
2020 Session: Orals & Spotlights Track 32: Optimization »
Hamed Hassani · Jeffrey A Bilmes -
2020 Poster: Task-Robust Model-Agnostic Meta-Learning »
Liam Collins · Aryan Mokhtari · Sanjay Shakkottai -
2020 Poster: Second Order Optimality in Decentralized Non-Convex Optimization via Perturbed Gradient Tracking »
Isidoros Tziotis · Constantine Caramanis · Aryan Mokhtari -
2020 Poster: Personalized Federated Learning with Theoretical Guarantees: A Model-Agnostic Meta-Learning Approach »
Alireza Fallah · Aryan Mokhtari · Asuman Ozdaglar -
2019 : Invited talk: Aryan Mokhtari (UT Austin) »
Aryan Mokhtari -
2019 Poster: Online Continuous Submodular Maximization: From Full-Information to Bandit Feedback »
Mingrui Zhang · Lin Chen · Hamed Hassani · Amin Karbasi -
2019 Poster: Stochastic Continuous Greedy ++: When Upper and Lower Bounds Match »
Amin Karbasi · Hamed Hassani · Aryan Mokhtari · Zebang Shen -
2019 Poster: Robust and Communication-Efficient Collaborative Learning »
Amirhossein Reisizadeh · Hossein Taheri · Aryan Mokhtari · Hamed Hassani · Ramtin Pedarsani -
2019 Poster: Efficient and Accurate Estimation of Lipschitz Constants for Deep Neural Networks »
Mahyar Fazlyab · Alexander Robey · Hamed Hassani · Manfred Morari · George J. Pappas -
2019 Spotlight: Efficient and Accurate Estimation of Lipschitz Constants for Deep Neural Networks »
Mahyar Fazlyab · Alexander Robey · Hamed Hassani · Manfred Morari · George J. Pappas -
2018 Poster: Direct Runge-Kutta Discretization Achieves Acceleration »
Jingzhao Zhang · Aryan Mokhtari · Suvrit Sra · Ali Jadbabaie -
2018 Spotlight: Direct Runge-Kutta Discretization Achieves Acceleration »
Jingzhao Zhang · Aryan Mokhtari · Suvrit Sra · Ali Jadbabaie -
2018 Poster: Escaping Saddle Points in Constrained Optimization »
Aryan Mokhtari · Asuman Ozdaglar · Ali Jadbabaie -
2018 Spotlight: Escaping Saddle Points in Constrained Optimization »
Aryan Mokhtari · Asuman Ozdaglar · Ali Jadbabaie -
2017 Poster: Gradient Methods for Submodular Maximization »
Hamed Hassani · Mahdi Soltanolkotabi · Amin Karbasi -
2017 Poster: Stochastic Submodular Maximization: The Case of Coverage Functions »
Mohammad Karimi · Mario Lucic · Hamed Hassani · Andreas Krause