Timezone: »
Existing approaches to depth or disparity estimation output a distribution over a set of pre-defined discrete values. This leads to inaccurate results when the true depth or disparity does not match any of these values. The fact that this distribution is usually learned indirectly through a regression loss causes further problems in ambiguous regions around object boundaries. We address these issues using a new neural network architecture that is capable of outputting arbitrary depth values, and a new loss function that is derived from the Wasserstein distance between the true and the predicted distributions. We validate our approach on a variety of tasks, including stereo disparity and depth estimation, and the downstream 3D object detection. Our approach drastically reduces the error in ambiguous regions, especially around object boundaries that greatly affect the localization of objects in 3D, achieving the state-of-the-art in 3D object detection for autonomous driving.
Author Information
Divyansh Garg (Cornell University)
Yan Wang (Cornell)
Bharath Hariharan (Cornell University)
Mark Campbell (Cornell University)
Kilian Weinberger (Cornell University / ASAPP Research)
Wei-Lun Chao (Ohio State University (OSU))
Related Events (a corresponding poster, oral, or spotlight)
-
2020 Spotlight: Wasserstein Distances for Stereo Disparity Estimation »
Tue. Dec 8th 03:10 -- 03:20 PM Room Orals & Spotlights: Vision Applications
More from the Same Authors
-
2021 Spotlight: IQ-Learn: Inverse soft-Q Learning for Imitation »
Divyansh Garg · Shuvam Chakraborty · Chris Cundy · Jiaming Song · Stefano Ermon -
2021 : Fixed Neural Network Steganography: Train the images, not the network »
Varsha Kishore · Xiangyu Chen · Yan Wang · Boyi Li · Kilian Weinberger -
2022 : Understanding Federated Learning through Loss Landscape Visualizations: A Pilot Study »
Ziwei Li · Hong-You Chen · Han Wei Shen · Wei-Lun Chao -
2022 Poster: Unsupervised Adaptation from Repeated Traversals for Autonomous Driving »
Yurong You · Cheng Perng Phoo · Katie Luo · Travis Zhang · Wei-Lun Chao · Bharath Hariharan · Mark Campbell · Kilian Weinberger -
2022 Poster: LISA: Learning Interpretable Skill Abstractions from Language »
Divyansh Garg · Skanda Vaidyanath · Kuno Kim · Jiaming Song · Stefano Ermon -
2021 Poster: Geometry Processing with Neural Fields »
Guandao Yang · Serge Belongie · Bharath Hariharan · Vladlen Koltun -
2021 Poster: IQ-Learn: Inverse soft-Q Learning for Imitation »
Divyansh Garg · Shuvam Chakraborty · Chris Cundy · Jiaming Song · Stefano Ermon -
2021 Poster: Gradual Domain Adaptation without Indexed Intermediate Domains »
Hong-You Chen · Wei-Lun Chao -
2021 Poster: On Model Calibration for Long-Tailed Object Detection and Instance Segmentation »
Tai-Yu Pan · Cheng Zhang · Yandong Li · Hexiang Hu · Dong Xuan · Soravit Changpinyo · Boqing Gong · Wei-Lun Chao -
2020 : Panel »
Kilian Weinberger · Maria De-Arteaga · Shibani Santurkar · Jonathan Frankle · Deborah Raji -
2020 : Q&A with Kilian »
Kilian Weinberger -
2020 : Invited: Kilian Weinberger »
Kilian Weinberger -
2020 Poster: Identifying Mislabeled Data using the Area Under the Margin Ranking »
Geoff Pleiss · Tianyi Zhang · Ethan Elenberg · Kilian Weinberger -
2019 Poster: Positional Normalization »
Boyi Li · Felix Wu · Kilian Weinberger · Serge Belongie -
2019 Spotlight: Positional Normalization »
Boyi Li · Felix Wu · Kilian Weinberger · Serge Belongie -
2019 Poster: Exact Gaussian Processes on a Million Data Points »
Ke Alexander Wang · Geoff Pleiss · Jacob Gardner · Stephen Tyree · Kilian Weinberger · Andrew Gordon Wilson -
2019 Poster: A New Defense Against Adversarial Images: Turning a Weakness into a Strength »
Shengyuan Hu · Tao Yu · Chuan Guo · Wei-Lun Chao · Kilian Weinberger -
2018 Poster: GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU Acceleration »
Jacob Gardner · Geoff Pleiss · Kilian Weinberger · David Bindel · Andrew Wilson -
2018 Spotlight: GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU Acceleration »
Jacob Gardner · Geoff Pleiss · Kilian Weinberger · David Bindel · Andrew Wilson -
2017 Poster: On Fairness and Calibration »
Geoff Pleiss · Manish Raghavan · Felix Wu · Jon Kleinberg · Kilian Weinberger -
2016 Poster: Supervised Word Mover's Distance »
Gao Huang · Chuan Guo · Matt J Kusner · Yu Sun · Fei Sha · Kilian Weinberger -
2016 Oral: Supervised Word Mover's Distance »
Gao Huang · Chuan Guo · Matt J Kusner · Yu Sun · Fei Sha · Kilian Weinberger -
2015 : Deep Manifold Traversal »
Kilian Weinberger -
2015 Poster: Fast Distributed k-Center Clustering with Outliers on Massive Data »
Gustavo Malkomes · Matt J Kusner · Wenlin Chen · Kilian Q Weinberger · Benjamin Moseley -
2015 Poster: Bayesian Active Model Selection with an Application to Automated Audiometry »
Jacob Gardner · Gustavo Malkomes · Roman Garnett · Kilian Weinberger · Dennis Barbour · John Cunningham -
2014 Workshop: Representation and Learning Methods for Complex Outputs »
Richard Zemel · Dale Schuurmans · Kilian Q Weinberger · Yuhong Guo · Jia Deng · Francesco Dinuzzo · Hal Daumé III · Honglak Lee · Noah A Smith · Richard Sutton · Jiaqian YU · Vitaly Kuznetsov · Luke Vilnis · Hanchen Xiong · Calvin Murdock · Thomas Unterthiner · Jean-Francis Roy · Martin Renqiang Min · Hichem SAHBI · Fabio Massimo Zanzotto -
2014 Poster: Diverse Sequential Subset Selection for Supervised Video Summarization »
Boqing Gong · Wei-Lun Chao · Kristen Grauman · Fei Sha -
2013 Workshop: Output Representation Learning »
Yuhong Guo · Dale Schuurmans · Richard Zemel · Samy Bengio · Yoshua Bengio · Li Deng · Dan Roth · Kilian Q Weinberger · Jason Weston · Kihyuk Sohn · Florent Perronnin · Gabriel Synnaeve · Pablo R Strasser · julien audiffren · Carlo Ciliberto · Dan Goldwasser -
2012 Poster: Non-linear Metric Learning »
Dor Kedem · Stephen Tyree · Kilian Q Weinberger · Fei Sha · Gert Lanckriet -
2011 Workshop: Beyond Mahalanobis: Supervised Large-Scale Learning of Similarity »
Greg Shakhnarovich · Dhruv Batra · Brian Kulis · Kilian Q Weinberger -
2011 Poster: Co-Training for Domain Adaptation »
Minmin Chen · Kilian Q Weinberger · John Blitzer -
2010 Session: Oral Session 16 »
Kilian Q Weinberger -
2010 Poster: Large Margin Multi-Task Metric Learning »
Shibin Parameswaran · Kilian Q Weinberger -
2010 Poster: Decoding Ipsilateral Finger Movements from ECoG Signals in Humans »
Yuzong Liu · Mohit Sharma · Charles M Gaona · Jonathan D Breshears · jarod Roland · zachary V Freudenburg · Kilian Q Weinberger · Eric C Leuthardt -
2008 Poster: Large Margin Taxonomy Embedding for Document Categorization »
Kilian Q Weinberger · Olivier Chapelle -
2008 Spotlight: Large Margin Taxonomy Embedding for Document Categorization »
Kilian Q Weinberger · Olivier Chapelle -
2006 Workshop: Novel Applications of Dimensionality Reduction »
John Blitzer · Rajarshi Das · Irina Rish · Kilian Q Weinberger -
2006 Poster: Graph Regularization for Maximum Variance Unfolding with an Application to Sensor Localization »
Kilian Q Weinberger · Fei Sha · Qihui Zhu · Lawrence Saul