Timezone: »
Bayesian neural networks are enjoying a renaissance driven in part by recent advances in variational inference (VI). The most common form of VI employs a fully factorized or mean-field distribution, but this is known to suffer from several pathologies, especially as we expect posterior distributions with highly correlated parameters. Current algorithms that capture these correlations with a Gaussian approximating family are difficult to scale to large models due to computational costs and high variance of gradient updates. By using a new form of the reparametrization trick, we derive a computationally efficient algorithm for performing VI with a Gaussian family with a low-rank plus diagonal covariance structure. We scale to deep feed-forward and convolutional architectures. We find that adding low-rank terms to parametrized diagonal covariance does not improve predictive performance except on small networks, but low-rank terms added to a constant diagonal covariance improves performance on small and large-scale network architectures.
Author Information
Marcin Tomczak (University of Cambridge)
Siddharth Swaroop (University of Cambridge)
Richard Turner (University of Cambridge)
More from the Same Authors
-
2020 Poster: Meta-Learning Stationary Stochastic Process Prediction with Convolutional Neural Processes »
Andrew Foong · Wessel Bruinsma · Jonathan Gordon · Yann Dubois · James Requeima · Richard Turner -
2020 Poster: On the Expressiveness of Approximate Inference in Bayesian Neural Networks »
Andrew Foong · David Burt · Yingzhen Li · Richard Turner -
2020 Poster: VAEM: a Deep Generative Model for Heterogeneous Mixed Type Data »
Chao Ma · Sebastian Tschiatschek · Richard Turner · José Miguel Hernández-Lobato · Cheng Zhang -
2020 Poster: Continual Deep Learning by Functional Regularisation of Memorable Past »
Pingbo Pan · Siddharth Swaroop · Alexander Immer · Runa Eschenhagen · Richard Turner · Mohammad Emtiyaz Khan -
2020 Oral: Continual Deep Learning by Functional Regularisation of Memorable Past »
Pingbo Pan · Siddharth Swaroop · Alexander Immer · Runa Eschenhagen · Richard Turner · Mohammad Emtiyaz Khan -
2019 Poster: Icebreaker: Element-wise Efficient Information Acquisition with a Bayesian Deep Latent Gaussian Model »
Wenbo Gong · Sebastian Tschiatschek · Sebastian Nowozin · Richard Turner · José Miguel Hernández-Lobato · Cheng Zhang -
2019 Poster: Practical Deep Learning with Bayesian Principles »
Kazuki Osawa · Siddharth Swaroop · Mohammad Emtiyaz Khan · Anirudh Jain · Runa Eschenhagen · Richard Turner · Rio Yokota -
2018 Poster: Infinite-Horizon Gaussian Processes »
Arno Solin · James Hensman · Richard Turner -
2018 Poster: Geometrically Coupled Monte Carlo Sampling »
Mark Rowland · Krzysztof Choromanski · François Chalus · Aldo Pacchiano · Tamas Sarlos · Richard Turner · Adrian Weller -
2018 Spotlight: Geometrically Coupled Monte Carlo Sampling »
Mark Rowland · Krzysztof Choromanski · François Chalus · Aldo Pacchiano · Tamas Sarlos · Richard Turner · Adrian Weller -
2017 Poster: Streaming Sparse Gaussian Process Approximations »
Thang Bui · Cuong Nguyen · Richard Turner -
2017 Poster: Interpolated Policy Gradient: Merging On-Policy and Off-Policy Gradient Estimation for Deep Reinforcement Learning »
Shixiang (Shane) Gu · Timothy Lillicrap · Richard Turner · Zoubin Ghahramani · Bernhard Schölkopf · Sergey Levine -
2016 Poster: Rényi Divergence Variational Inference »
Yingzhen Li · Richard Turner -
2015 Poster: Neural Adaptive Sequential Monte Carlo »
Shixiang (Shane) Gu · Zoubin Ghahramani · Richard Turner -
2015 Poster: Learning Stationary Time Series using Gaussian Processes with Nonparametric Kernels »
Felipe Tobar · Thang Bui · Richard Turner -
2015 Poster: Stochastic Expectation Propagation »
Yingzhen Li · José Miguel Hernández-Lobato · Richard Turner -
2015 Spotlight: Learning Stationary Time Series using Gaussian Processes with Nonparametric Kernels »
Felipe Tobar · Thang Bui · Richard Turner -
2015 Spotlight: Stochastic Expectation Propagation »
Yingzhen Li · José Miguel Hernández-Lobato · Richard Turner -
2014 Poster: Tree-structured Gaussian Process Approximations »
Thang Bui · Richard Turner -
2014 Spotlight: Tree-structured Gaussian Process Approximations »
Thang Bui · Richard Turner -
2011 Poster: Probabilistic amplitude and frequency demodulation »
Richard Turner · Maneesh Sahani -
2011 Spotlight: Probabilistic amplitude and frequency demodulation »
Richard Turner · Maneesh Sahani -
2009 Poster: Occlusive Components Analysis »
Jörg Lücke · Richard Turner · Maneesh Sahani · Marc Henniges -
2007 Workshop: Beyond Simple Cells: Probabilistic Models for Visual Cortical Processing »
Richard Turner · Pietro Berkes · Maneesh Sahani -
2007 Poster: Modeling Natural Sounds with Modulation Cascade Processes »
Richard Turner · Maneesh Sahani -
2007 Poster: On Sparsity and Overcompleteness in Image Models »
Pietro Berkes · Richard Turner · Maneesh Sahani