`

Timezone: »

 
Poster
Revisiting Frank-Wolfe for Polytopes: Strict Complementarity and Sparsity
Dan Garber

Wed Dec 09 09:00 AM -- 11:00 AM (PST) @ Poster Session 3 #1060

In recent years it was proved that simple modifications of the classical Frank-Wolfe algorithm (aka conditional gradient algorithm) for smooth convex minimization over convex and compact polytopes, converge with linear rate, assuming the objective function has the quadratic growth property. However, the rate of these methods depends explicitly on the dimension of the problem which cannot explain their empirical success for large scale problems. In this paper we first demonstrate that already for very simple problems and even when the optimal solution lies on a low-dimensional face of the polytope, such dependence on the dimension cannot be avoided in worst case. We then revisit the addition of a strict complementarity assumption already considered in Wolfe's classical book \cite{Wolfe1970}, and prove that under this condition, the Frank-Wolfe method with away-steps and line-search converges linearly with rate that depends explicitly only on the dimension of the optimal face, hence providing a significant improvement in case the optimal solution is sparse. We motivate this strict complementarity condition by proving that it implies sparsity-robustness of optimal solutions to noise.

Author Information

Dan Garber (Technion - Israel Institute of Technology)

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors