Timezone: »
Poster
Improving Sample Complexity Bounds for (Natural) Actor-Critic Algorithms
Tengyu Xu · Zhe Wang · Yingbin Liang
The actor-critic (AC) algorithm is a popular method to find an optimal policy in reinforcement learning. In the infinite horizon scenario, the finite-sample convergence rate for the AC and natural actor-critic (NAC) algorithms has been established recently, but under independent and identically distributed (i.i.d.) sampling and single-sample update at each iteration. In contrast, this paper characterizes the convergence rate and sample complexity of AC and NAC under Markovian sampling, with mini-batch data for each iteration, and with actor having general policy class approximation. We show that the overall sample complexity for a mini-batch AC to attain an $\epsilon$-accurate stationary point improves the best known sample complexity of AC by an order of $\mathcal{O}(\epsilon^{-1}\log(1/\epsilon))$, and the overall sample complexity for a mini-batch NAC to attain an $\epsilon$-accurate globally optimal point improves the existing sample complexity of NAC by an order of $\mathcal{O}(\epsilon^{-2}/\log(1/\epsilon))$. Moreover, the sample complexity of AC and NAC characterized in this work outperforms that of policy gradient (PG) and natural policy gradient (NPG) by a factor of $\mathcal{O}((1-\gamma)^{-3})$ and $\mathcal{O}((1-\gamma)^{-4}\epsilon^{-2}/\log(1/\epsilon))$, respectively. This is the first theoretical study establishing that AC and NAC attain orderwise performance improvement over PG and NPG under infinite horizon due to the incorporation of critic.
Author Information
Tengyu Xu (The Ohio State University)
Zhe Wang (Ohio State University)
Yingbin Liang (The Ohio State University)
More from the Same Authors
-
2021 Spotlight: Provably Faster Algorithms for Bilevel Optimization »
Junjie Yang · Kaiyi Ji · Yingbin Liang -
2022 Poster: Provable Generalization of Overparameterized Meta-learning Trained with SGD »
Yu Huang · Yingbin Liang · Longbo Huang -
2022 : Online Min-max Optimization: Nonconvexity, Nonstationarity, and Dynamic Regret »
Yu Huang · Yuan Cheng · Yingbin Liang · Longbo Huang -
2022 Spotlight: Will Bilevel Optimizers Benefit from Loops »
Kaiyi Ji · Mingrui Liu · Yingbin Liang · Lei Ying -
2022 Spotlight: Lightning Talks 3B-2 »
Yu Huang · Tero Karras · Maxim Kodryan · Shiau Hong Lim · Shudong Huang · Ziyu Wang · Siqiao Xue · ILYAS MALIK · Ekaterina Lobacheva · Miika Aittala · Hongjie Wu · Yuhao Zhou · Yingbin Liang · Xiaoming Shi · Jun Zhu · Maksim Nakhodnov · Timo Aila · Yazhou Ren · James Zhang · Longbo Huang · Dmitry Vetrov · Ivor Tsang · Hongyuan Mei · Samuli Laine · Zenglin Xu · Wentao Feng · Jiancheng Lv -
2022 Spotlight: Provable Generalization of Overparameterized Meta-learning Trained with SGD »
Yu Huang · Yingbin Liang · Longbo Huang -
2022 Spotlight: Lightning Talks 1A-3 »
Kimia Noorbakhsh · Ronan Perry · Qi Lyu · Jiawei Jiang · Christian Toth · Olivier Jeunen · Xin Liu · Yuan Cheng · Lei Li · Manuel Rodriguez · Julius von Kügelgen · Lars Lorch · Nicolas Donati · Lukas Burkhalter · Xiao Fu · Zhongdao Wang · Songtao Feng · Ciarán Gilligan-Lee · Rishabh Mehrotra · Fangcheng Fu · Jing Yang · Bernhard Schölkopf · Ya-Li Li · Christian Knoll · Maks Ovsjanikov · Andreas Krause · Shengjin Wang · Hong Zhang · Mounia Lalmas · Bolin Ding · Bo Du · Yingbin Liang · Franz Pernkopf · Robert Peharz · Anwar Hithnawi · Julius von Kügelgen · Bo Li · Ce Zhang -
2022 Spotlight: Provable Benefit of Multitask Representation Learning in Reinforcement Learning »
Yuan Cheng · Songtao Feng · Jing Yang · Hong Zhang · Yingbin Liang -
2022 Poster: A Unifying Framework of Off-Policy General Value Function Evaluation »
Tengyu Xu · Zhuoran Yang · Zhaoran Wang · Yingbin Liang -
2022 Poster: On the Convergence Theory for Hessian-Free Bilevel Algorithms »
Daouda Sow · Kaiyi Ji · Yingbin Liang -
2022 Poster: Provable Benefit of Multitask Representation Learning in Reinforcement Learning »
Yuan Cheng · Songtao Feng · Jing Yang · Hong Zhang · Yingbin Liang -
2022 Poster: Will Bilevel Optimizers Benefit from Loops »
Kaiyi Ji · Mingrui Liu · Yingbin Liang · Lei Ying -
2021 Poster: Faster Non-asymptotic Convergence for Double Q-learning »
Lin Zhao · Huaqing Xiong · Yingbin Liang -
2021 Poster: Provably Faster Algorithms for Bilevel Optimization »
Junjie Yang · Kaiyi Ji · Yingbin Liang -
2020 Poster: Convergence of Meta-Learning with Task-Specific Adaptation over Partial Parameters »
Kaiyi Ji · Jason Lee · Yingbin Liang · H. Vincent Poor -
2020 Poster: Finite-Time Analysis for Double Q-learning »
Huaqing Xiong · Lin Zhao · Yingbin Liang · Wei Zhang -
2020 Spotlight: Finite-Time Analysis for Double Q-learning »
Huaqing Xiong · Lin Zhao · Yingbin Liang · Wei Zhang -
2019 Poster: SpiderBoost and Momentum: Faster Variance Reduction Algorithms »
Zhe Wang · Kaiyi Ji · Yi Zhou · Yingbin Liang · Vahid Tarokh -
2019 Poster: Finite-Sample Analysis for SARSA with Linear Function Approximation »
Shaofeng Zou · Tengyu Xu · Yingbin Liang -
2019 Poster: Two Time-scale Off-Policy TD Learning: Non-asymptotic Analysis over Markovian Samples »
Tengyu Xu · Shaofeng Zou · Yingbin Liang -
2018 Poster: Convergence of Cubic Regularization for Nonconvex Optimization under KL Property »
Yi Zhou · Zhe Wang · Yingbin Liang -
2018 Spotlight: Convergence of Cubic Regularization for Nonconvex Optimization under KL Property »
Yi Zhou · Zhe Wang · Yingbin Liang -
2018 Poster: Minimax Estimation of Neural Net Distance »
Kaiyi Ji · Yingbin Liang