Timezone: »

 
Oral
High-Fidelity Generative Image Compression
Fabian Mentzer · George D Toderici · Michael Tschannen · Eirikur Agustsson

Wed Dec 09 06:00 AM -- 06:15 AM (PST) @ Orals & Spotlights: COVID/Applications/Composition

We extensively study how to combine Generative Adversarial Networks and learned compression to obtain a state-of-the-art generative lossy compression system. In particular, we investigate normalization layers, generator and discriminator architectures, training strategies, as well as perceptual losses. In contrast to previous work, i) we obtain visually pleasing reconstructions that are perceptually similar to the input, ii) we operate in a broad range of bitrates, and iii) our approach can be applied to high-resolution images. We bridge the gap between rate-distortion-perception theory and practice by evaluating our approach both quantitatively with various perceptual metrics, and with a user study. The study shows that our method is preferred to previous approaches even if they use more than 2x the bitrate.

Author Information

Fabian Mentzer (ETH Zurich)
George D Toderici (Google)
Michael Tschannen (Apple)
Eirikur Agustsson (Google Research)

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors

  • 2022 Poster: VCT: A Video Compression Transformer »
    Fabian Mentzer · George D Toderici · David Minnen · Sergi Caelles · Sung Jin Hwang · Mario Lucic · Eirikur Agustsson
  • 2020 Poster: Universally Quantized Neural Compression »
    Eirikur Agustsson · Lucas Theis
  • 2019 : Poster Session »
    Gergely Flamich · Shashanka Ubaru · Charles Zheng · Josip Djolonga · Kristoffer Wickstrøm · Diego Granziol · Konstantinos Pitas · Jun Li · Robert Williamson · Sangwoong Yoon · Kwot Sin Lee · Julian Zilly · Linda Petrini · Ian Fischer · Zhe Dong · Alexander Alemi · Bao-Ngoc Nguyen · Rob Brekelmans · Tailin Wu · Aditya Mahajan · Alexander Li · Kirankumar Shiragur · Yair Carmon · Linara Adilova · SHIYU LIU · Bang An · Sanjeeb Dash · Oktay Gunluk · Arya Mazumdar · Mehul Motani · Julia Rosenzweig · Michael Kamp · Marton Havasi · Leighton P Barnes · Zhengqing Zhou · Yi Hao · Dylan Foster · Yuval Benjamini · Nati Srebro · Michael Tschannen · Paul Rubenstein · Sylvain Gelly · John Duchi · Aaron Sidford · Robin Ru · Stefan Zohren · Murtaza Dalal · Michael A Osborne · Stephen J Roberts · Moses Charikar · Jayakumar Subramanian · Xiaodi Fan · Max Schwarzer · Nicholas Roberts · Simon Lacoste-Julien · Vinay Prabhu · Aram Galstyan · Greg Ver Steeg · Lalitha Sankar · Yung-Kyun Noh · Gautam Dasarathy · Frank Park · Ngai-Man (Man) Cheung · Ngoc-Trung Tran · Linxiao Yang · Ben Poole · Andrea Censi · Tristan Sylvain · R Devon Hjelm · Bangjie Liu · Jose Gallego-Posada · Tyler Sypherd · Kai Yang · Jan Nikolas Morshuis
  • 2018 Poster: Deep Generative Models for Distribution-Preserving Lossy Compression »
    Michael Tschannen · Eirikur Agustsson · Mario Lucic
  • 2018 Poster: Joint Autoregressive and Hierarchical Priors for Learned Image Compression »
    David Minnen · Johannes Ballé · Johannes Ballé · George D Toderici
  • 2017 Poster: Greedy Algorithms for Cone Constrained Optimization with Convergence Guarantees »
    Francesco Locatello · Michael Tschannen · Gunnar Ratsch · Martin Jaggi
  • 2017 Poster: Soft-to-Hard Vector Quantization for End-to-End Learning Compressible Representations »
    Eirikur Agustsson · Fabian Mentzer · Michael Tschannen · Lukas Cavigelli · Radu Timofte · Luca Benini · Luc V Gool