Timezone: »
This paper studies the problem of learning the correlation structure of a set of intervention functions defined on the directed acyclic graph (DAG) of a causal model. This is useful when we are interested in jointly learning the causal effects of interventions on different subsets of variables in a DAG, which is common in field such as healthcare or operations research. We propose the first multi-task causal Gaussian process (GP) model, which we call DAG-GP, that allows for information sharing across continuous interventions and across experiments on different variables. DAG-GP accommodates different assumptions in terms of data availability and captures the correlation between functions lying in input spaces of different dimensionality via a well-defined integral operator. We give theoretical results detailing when and how the DAG-GP model can be formulated depending on the DAG. We test both the quality of its predictions and its calibrated uncertainties. Compared to single-task models, DAG-GP achieves the best fitting performance in a variety of real and synthetic settings. In addition, it helps to select optimal interventions faster than competing approaches when used within sequential decision making frameworks, like active learning or Bayesian optimization.
Author Information
Virginia Aglietti (University of Warwick)
Theodoros Damoulas (University of Warwick & The Alan Turing Institute)
Mauricio Álvarez (University of Sheffield)
Javier González (Microsoft Research Cambridge)
More from the Same Authors
-
2020 : Scalable Multitask Latent Force Models with Applications to Predicting Lithium-ion Concentration »
Daniel Tait · Ferran Brosa Planella · Widanalage Dhammika Widanage · Theodoros Damoulas -
2021 : Invariant Priors for Bayesian Quadrature »
Masha Naslidnyk · Javier González · Maren Mahsereci -
2021 : Robust Bayesian Inference for Simulator-based Models via the MMD Posterior Bootstrap »
Harita Dellaporta · Jeremias Knoblauch · Theodoros Damoulas · Francois-Xavier Briol -
2022 Poster: RKHS-SHAP: Shapley Values for Kernel Methods »
Siu Lun Chau · Robert Hu · Javier González · Dino Sejdinovic -
2021 : Panel »
Mohammad Emtiyaz Khan · Atoosa Kasirzadeh · Anna Rogers · Javier González · Suresh Venkatasubramanian · Robert Williamson -
2021 Poster: Dynamic Causal Bayesian Optimization »
Virginia Aglietti · Neil Dhir · Javier González · Theodoros Damoulas -
2021 Poster: Modular Gaussian Processes for Transfer Learning »
Pablo Moreno-Muñoz · Antonio Artes · Mauricio Álvarez -
2021 Poster: Learning Nonparametric Volterra Kernels with Gaussian Processes »
Magnus Ross · Michael T Smith · Mauricio Álvarez -
2021 Poster: BayesIMP: Uncertainty Quantification for Causal Data Fusion »
Siu Lun Chau · Jean-Francois Ton · Javier González · Yee Teh · Dino Sejdinovic -
2021 Poster: Higher Order Kernel Mean Embeddings to Capture Filtrations of Stochastic Processes »
Cristopher Salvi · Maud Lemercier · Chong Liu · Blanka Horvath · Theodoros Damoulas · Terry Lyons -
2021 Poster: Spatio-Temporal Variational Gaussian Processes »
Oliver Hamelijnck · William Wilkinson · Niki Loppi · Arno Solin · Theodoros Damoulas -
2021 Poster: Compositional Modeling of Nonlinear Dynamical Systems with ODE-based Random Features »
Thomas McDonald · Mauricio Álvarez -
2020 Poster: Generalised Bayesian Filtering via Sequential Monte Carlo »
Ayman Boustati · Omer Deniz Akyildiz · Theodoros Damoulas · Adam Johansen -
2020 Poster: BOSS: Bayesian Optimization over String Spaces »
Henry Moss · David Leslie · Daniel Beck · Javier González · Paul Rayson -
2020 Spotlight: BOSS: Bayesian Optimization over String Spaces »
Henry Moss · David Leslie · Daniel Beck · Javier González · Paul Rayson -
2019 Poster: Structured Variational Inference in Continuous Cox Process Models »
Virginia Aglietti · Edwin Bonilla · Theodoros Damoulas · Sally Cripps -
2019 Poster: Multi-resolution Multi-task Gaussian Processes »
Oliver Hamelijnck · Theodoros Damoulas · Kangrui Wang · Mark Girolami -
2019 Poster: Multi-task Learning for Aggregated Data using Gaussian Processes »
Fariba Yousefi · Michael T Smith · Mauricio Álvarez -
2019 Poster: Meta-Surrogate Benchmarking for Hyperparameter Optimization »
Aaron Klein · Zhenwen Dai · Frank Hutter · Neil Lawrence · Javier González -
2018 Poster: Heterogeneous Multi-output Gaussian Process Prediction »
Pablo Moreno-Muñoz · Antonio Artés · Mauricio Álvarez -
2018 Spotlight: Heterogeneous Multi-output Gaussian Process Prediction »
Pablo Moreno-Muñoz · Antonio Artés · Mauricio Álvarez -
2018 Poster: Doubly Robust Bayesian Inference for Non-Stationary Streaming Data with $\beta$-Divergences »
Jeremias Knoblauch · Jack E Jewson · Theodoros Damoulas -
2017 : Final remarks »
Alessandra Tosi · Alfredo Vellido · Mauricio Álvarez -
2017 : Opening remarks »
Alessandra Tosi · Alfredo Vellido · Mauricio Álvarez -
2017 Workshop: Transparent and interpretable Machine Learning in Safety Critical Environments »
Alessandra Tosi · Alfredo Vellido · Mauricio Álvarez -
2017 Poster: Efficient Modeling of Latent Information in Supervised Learning using Gaussian Processes »
Zhenwen Dai · Mauricio Álvarez · Neil Lawrence -
2013 Workshop: Machine Learning for Sustainability »
Edwin Bonilla · Thomas Dietterich · Theodoros Damoulas · Andreas Krause · Daniel Sheldon · Iadine Chades · J. Zico Kolter · Bistra Dilkina · Carla Gomes · Hugo P Simao -
2012 Workshop: Human Computation for Science and Computational Sustainability »
Theodoros Damoulas · Thomas Dietterich · Edith Law · Serge Belongie