Timezone: »
In machine learning, data is usually represented in a (flat) Euclidean space where distances between points are along straight lines. Researchers have recently considered more exotic (non-Euclidean) Riemannian manifolds such as hyperbolic space which is well suited for tree-like data. In this paper, we propose a representation living on a pseudo-Riemannian manifold of constant nonzero curvature. It is a generalization of hyperbolic and spherical geometries where the nondegenerate metric tensor need not be positive definite. We provide the necessary learning tools in this geometry and extend gradient-based optimization techniques. More specifically, we provide closed-form expressions for distances via geodesics and define a descent direction to minimize some objective function. Our novel framework is applied to graph representations.
Author Information
Marc Law (NVIDIA)
Jos Stam (NVIDIA)
More from the Same Authors
-
2021 Spotlight: Ultrahyperbolic Neural Networks »
Marc Law -
2022 Poster: Optimizing Data Collection for Machine Learning »
Rafid Mahmood · James Lucas · Jose M. Alvarez · Sanja Fidler · Marc Law -
2021 Poster: Ultrahyperbolic Neural Networks »
Marc Law