Timezone: »
We consider a natural model of online preference aggregation, where sets of preferred items R1, R2, ..., Rt, ..., along with a demand for kt items in each Rt, appear online. Without prior knowledge of (Rt, kt), the learner maintains a ranking \pit aiming that at least kt items from Rt appear high in \pi_t. This is a fundamental problem in preference aggregation with applications to e.g., ordering product or news items in web pages based on user scrolling and click patterns.
The widely studied Generalized Min-Sum-Set-Cover (GMSSC) problem serves as a formal model for the setting above. GMSSC is NP-hard and the standard application of no-regret online learning algorithms is computationally inefficient, because they operate in the space of rankings. In this work, we show how to achieve low regret for GMSSC in polynomial-time. We employ dimensionality reduction from rankings to the space of doubly stochastic matrices, where we apply Online Gradient Descent. A key step is to show how subgradients can be computed efficiently, by solving the dual of a configuration LP. Using deterministic and randomized rounding schemes, we map doubly stochastic matrices back to rankings with a small loss in the GMSSC objective.
Author Information
Dimitris Fotakis (National Technical University of Athens)
Thanasis Lianeas (National Technical University of Athens)
Georgios Piliouras (Singapore University of Technology and Design)
Stratis Skoulakis (Singapore University of Technology and Design)
More from the Same Authors
-
2022 Poster: Linear Label Ranking with Bounded Noise »
Dimitris Fotakis · Alkis Kalavasis · Vasilis Kontonis · Christos Tzamos -
2022 Poster: Perfect Sampling from Pairwise Comparisons »
Dimitris Fotakis · Alkis Kalavasis · Christos Tzamos -
2021 Poster: Identity testing for Mallows model »
Róbert Busa-Fekete · Dimitris Fotakis · Balazs Szorenyi · Emmanouil Zampetakis -
2021 Poster: Private and Non-private Uniformity Testing for Ranking Data »
Róbert Busa-Fekete · Dimitris Fotakis · Emmanouil Zampetakis -
2021 Poster: Online Learning in Periodic Zero-Sum Games »
Tanner Fiez · Ryann Sim · Stratis Skoulakis · Georgios Piliouras · Lillian Ratliff -
2020 Poster: No-Regret Learning and Mixed Nash Equilibria: They Do Not Mix »
Emmanouil-Vasileios Vlatakis-Gkaragkounis · Lampros Flokas · Thanasis Lianeas · Panayotis Mertikopoulos · Georgios Piliouras -
2020 Poster: The route to chaos in routing games: When is price of anarchy too optimistic? »
Thiparat Chotibut · Fryderyk Falniowski · Michał Misiurewicz · Georgios Piliouras -
2020 Spotlight: No-Regret Learning and Mixed Nash Equilibria: They Do Not Mix »
Emmanouil-Vasileios Vlatakis-Gkaragkounis · Lampros Flokas · Thanasis Lianeas · Panayotis Mertikopoulos · Georgios Piliouras -
2020 Poster: Chaos, Extremism and Optimism: Volume Analysis of Learning in Games »
Yun Kuen Cheung · Georgios Piliouras -
2019 Poster: Efficiently avoiding saddle points with zero order methods: No gradients required »
Emmanouil-Vasileios Vlatakis-Gkaragkounis · Lampros Flokas · Georgios Piliouras -
2019 Poster: Poincaré Recurrence, Cycles and Spurious Equilibria in Gradient-Descent-Ascent for Non-Convex Non-Concave Zero-Sum Games »
Emmanouil-Vasileios Vlatakis-Gkaragkounis · Lampros Flokas · Georgios Piliouras -
2019 Spotlight: Poincaré Recurrence, Cycles and Spurious Equilibria in Gradient-Descent-Ascent for Non-Convex Non-Concave Zero-Sum Games »
Emmanouil-Vasileios Vlatakis-Gkaragkounis · Lampros Flokas · Georgios Piliouras -
2019 Poster: Fast and Furious Learning in Zero-Sum Games: Vanishing Regret with Non-Vanishing Step Sizes »
James Bailey · Georgios Piliouras