Timezone: »
We investigate whether Differentially Private SGD offers better privacy in practice than what is guaranteed by its state-of-the-art analysis. We do so via novel data poisoning attacks, which we show correspond to realistic privacy attacks. While previous work (Ma et al., arXiv 2019) proposed this connection between differential privacy and data poisoning as a defense against data poisoning, our use as a tool for understanding the privacy of a specific mechanism is new. More generally, our work takes a quantitative, empirical approach to understanding the privacy afforded by specific implementations of differentially private algorithms that we believe has the potential to complement and influence analytical work on differential privacy.
Author Information
Matthew Jagielski (Northeastern University)
Jonathan Ullman (Northeastern University)
Alina Oprea (Northeastern University)
More from the Same Authors
-
2020 : Adversarial Attacks and Countermeasures on Private Training in MPC »
Matthew Jagielski -
2021 Spotlight: Covariance-Aware Private Mean Estimation Without Private Covariance Estimation »
Gavin Brown · Marco Gaboardi · Adam Smith · Jonathan Ullman · Lydia Zakynthinou -
2023 Poster: Unleashing the Power of Randomization in Auditing Differentially Private ML »
Krishna Pillutla · Galen Andrew · Peter Kairouz · H. Brendan McMahan · Alina Oprea · Sewoong Oh -
2021 Poster: Covariance-Aware Private Mean Estimation Without Private Covariance Estimation »
Gavin Brown · Marco Gaboardi · Adam Smith · Jonathan Ullman · Lydia Zakynthinou -
2020 Poster: CoinPress: Practical Private Mean and Covariance Estimation »
Sourav Biswas · Yihe Dong · Gautam Kamath · Jonathan Ullman -
2020 Poster: Private Identity Testing for High-Dimensional Distributions »
Clément L Canonne · Gautam Kamath · Audra McMillan · Jonathan Ullman · Lydia Zakynthinou -
2020 Spotlight: Private Identity Testing for High-Dimensional Distributions »
Clément L Canonne · Gautam Kamath · Audra McMillan · Jonathan Ullman · Lydia Zakynthinou -
2019 : Poster Session »
Nathalie Baracaldo · Seth Neel · Tuyen Le · Dan Philps · Suheng Tao · Sotirios Chatzis · Toyo Suzumura · Wei Wang · WENHANG BAO · Solon Barocas · Manish Raghavan · Samuel Maina · Reginald Bryant · Kush Varshney · Skyler D. Speakman · Navdeep Gill · Nicholas Schmidt · Kevin Compher · Naveen Sundar Govindarajulu · Vivek Sharma · Praneeth Vepakomma · Tristan Swedish · Jayashree Kalpathy-Cramer · Ramesh Raskar · Shihao Zheng · Mykola Pechenizkiy · Marco Schreyer · Li Ling · Chirag Nagpal · Robert Tillman · Manuela Veloso · Hanjie Chen · Xintong Wang · Michael Wellman · Matthew van Adelsberg · Ben Wood · Hans Buehler · Mahmoud Mahfouz · Antonios Alexos · Megan Shearer · Antigoni Polychroniadou · Lucia Larise Stavarache · Dmitry Efimov · Johnston P Hall · Yukun Zhang · Emily Diana · Sumitra Ganesh · Vineeth Ravi · · Swetasudha Panda · Xavier Renard · Matthew Jagielski · Yonadav Shavit · Joshua Williams · Haoran Wei · Shuang (Sophie) Zhai · Xinyi Li · Hongda Shen · Daiki Matsunaga · Jaesik Choi · Alexis Laignelet · Batuhan Guler · Jacobo Roa Vicens · Ajit Desai · Jonathan Aigrain · Robert Samoilescu -
2019 Workshop: Robust AI in Financial Services: Data, Fairness, Explainability, Trustworthiness, and Privacy »
Alina Oprea · Avigdor Gal · Eren K. · Isabelle Moulinier · Jiahao Chen · Manuela Veloso · Senthil Kumar · Tanveer Faruquie -
2019 : Opening Remarks »
Jiahao Chen · Manuela Veloso · Senthil Kumar · Isabelle Moulinier · Avigdor Gal · Alina Oprea · Tanveer Faruquie · Eren K. -
2019 Poster: Differentially Private Algorithms for Learning Mixtures of Separated Gaussians »
Gautam Kamath · Or Sheffet · Vikrant Singhal · Jonathan Ullman -
2019 Poster: Efficiently Estimating Erdos-Renyi Graphs with Node Differential Privacy »
Jonathan Ullman · Adam Sealfon -
2018 Poster: The Limits of Post-Selection Generalization »
Jonathan Ullman · Adam Smith · Kobbi Nissim · Uri Stemmer · Thomas Steinke -
2018 Poster: Local Differential Privacy for Evolving Data »
Matthew Joseph · Aaron Roth · Jonathan Ullman · Bo Waggoner -
2018 Spotlight: Local Differential Privacy for Evolving Data »
Matthew Joseph · Aaron Roth · Jonathan Ullman · Bo Waggoner -
2016 Poster: Privacy Odometers and Filters: Pay-as-you-Go Composition »
Ryan Rogers · Salil Vadhan · Aaron Roth · Jonathan Ullman