Timezone: »
We propose self-adaptive training---a new training algorithm that dynamically calibrates training process by model predictions without incurring extra computational cost---to improve generalization of deep learning for potentially corrupted training data. This problem is important to robustly learning from data that are corrupted by, e.g., random noises and adversarial examples. The standard empirical risk minimization (ERM) for such data, however, may easily overfit noises and thus suffers from sub-optimal performance. In this paper, we observe that model predictions can substantially benefit the training process: self-adaptive training significantly mitigates the overfitting issue and improves generalization over ERM under both random and adversarial noises. Besides, in sharp contrast to the recently-discovered double-descent phenomenon in ERM, self-adaptive training exhibits a single-descent error-capacity curve, indicating that such a phenomenon might be a result of overfitting of noises. Experiments on the CIFAR and ImageNet datasets verify the effectiveness of our approach in two applications: classification with label noise and selective classification. The code is available at \url{https://github.com/LayneH/self-adaptive-training}.
Author Information
Lang Huang (Peking University)
I am currently a second-year Ph.D. student at the Department of Information & Communication Engineering, The University of Tokyo. Prior to that, I received a Master’s degree from the Department of Machine Intelligence, School of Electronics Engineering and Computer Science, Peking University in 2021. My research interests include self-supervised representation learning, robust learning from noisy data, and vision transformers.
Chao Zhang (Peking University)
Hongyang Zhang (TTIC)
More from the Same Authors
-
2022 Poster: Learning Efficient Vision Transformers via Fine-Grained Manifold Distillation »
Zhiwei Hao · Jianyuan Guo · Ding Jia · Kai Han · Yehui Tang · Chao Zhang · Han Hu · Yunhe Wang -
2023 Poster: Rank-DETR for High Quality Object Detection »
Yifan Pu · Weicong Liang · Yiduo Hao · YUHUI YUAN · Yukang Yang · Chao Zhang · Han Hu · Gao Huang -
2022 Spotlight: Lightning Talks 6B-3 »
Lingfeng Yang · Yao Lai · Zizheng Pan · Zhenyu Wang · Weicong Liang · Chuanyang Zheng · Jian-Wei Zhang · Peng Jin · Jing Liu · Xiuying Wei · Yao Mu · Xiang Li · YUHUI YUAN · Zizheng Pan · Yifan Sun · Yunchen Zhang · Jianfei Cai · Hao Luo · zheyang li · Jinfa Huang · Haoyu He · Yi Yang · Ping Luo · Fenglin Liu · Henghui Ding · Borui Zhao · Xiangguo Zhang · Kai Zhang · Pichao WANG · Bohan Zhuang · Wei Chen · Ruihao Gong · Zhi Yang · Xian Wu · Feng Ding · Jianfei Cai · Xiao Luo · Renjie Song · Weihong Lin · Jian Yang · Wenming Tan · Bohan Zhuang · Shanghang Zhang · Shen Ge · Fan Wang · Qi Zhang · Guoli Song · Jun Xiao · Hao Li · Ding Jia · David Clifton · Ye Ren · Fengwei Yu · Zheng Zhang · Jie Chen · Shiliang Pu · Xianglong Liu · Chao Zhang · Han Hu -
2022 Spotlight: Expediting Large-Scale Vision Transformer for Dense Prediction without Fine-tuning »
Weicong Liang · YUHUI YUAN · Henghui Ding · Xiao Luo · Weihong Lin · Ding Jia · Zheng Zhang · Chao Zhang · Han Hu -
2022 Poster: Expediting Large-Scale Vision Transformer for Dense Prediction without Fine-tuning »
Weicong Liang · YUHUI YUAN · Henghui Ding · Xiao Luo · Weihong Lin · Ding Jia · Zheng Zhang · Chao Zhang · Han Hu -
2022 Poster: Green Hierarchical Vision Transformer for Masked Image Modeling »
Lang Huang · Shan You · Mingkai Zheng · Fei Wang · Chen Qian · Toshihiko Yamasaki -
2021 Poster: HRFormer: High-Resolution Vision Transformer for Dense Predict »
YUHUI YUAN · Rao Fu · Lang Huang · Weihong Lin · Chao Zhang · Xilin Chen · Jingdong Wang -
2020 Poster: A Closer Look at Accuracy vs. Robustness »
Yao-Yuan Yang · Cyrus Rashtchian · Hongyang Zhang · Russ Salakhutdinov · Kamalika Chaudhuri -
2018 Poster: Joint Sub-bands Learning with Clique Structures for Wavelet Domain Super-Resolution »
Zhisheng Zhong · Tiancheng Shen · Yibo Yang · Zhouchen Lin · Chao Zhang -
2018 Poster: Greedy Hash: Towards Fast Optimization for Accurate Hash Coding in CNN »
Shupeng Su · Chao Zhang · Kai Han · Yonghong Tian