Timezone: »
Continual learning agents experience a stream of (related) tasks. The main challenge is that the agent must not forget previous tasks and also adapt to novel tasks in the stream. We are interested in the intersection of two recent continual-learning scenarios. In meta-continual learning, the model is pre-trained using meta-learning to minimize catastrophic forgetting of previous tasks. In continual-meta learning, the aim is to train agents for faster remembering of previous tasks through adaptation. In their original formulations, both methods have limitations. We stand on their shoulders to propose a more general scenario, OSAKA, where an agent must quickly solve new (out-of-distribution) tasks, while also requiring fast remembering. We show that current continual learning, meta-learning, meta-continual learning, and continual-meta learning techniques fail in this new scenario. We propose Continual-MAML, an online extension of the popular MAML algorithm as a strong baseline for this scenario. We show in an empirical study that Continual-MAML is better suited to the new scenario than the aforementioned methodologies including standard continual learning and meta-learning approaches.
Author Information
Massimo Caccia (MILA)
Pau Rodriguez (Element AI)
Oleksiy Ostapenko (University of Montreal, MILA)
Fabrice Normandin (MILA)
Min Lin (MILA)
Lucas Page-Caccia (McGill University)
Issam Hadj Laradji (McGill + Element AI)
Irina Rish (Mila/UdeM)
Alexandre Lacoste (Element AI)
David Vázquez (Element AI)
Laurent Charlin (MILA / U.Montreal)
More from the Same Authors
-
2020 : Counting Cows: Tracking Illegal Cattle Ranching From High-Resolution Satellite Imagery »
Issam Hadj Laradji -
2021 : FedGMA: Federated Learning with Gradient Masked Averaging »
Irene Tenison · Sai Aravind Sreeramadas · Vaikkunth Mugunthan · Irina Rish -
2022 : Poly-S: Analyzing and Improving Polytropon for Data-Efficient Multi-Task Learning »
Lucas Page-Caccia · Edoardo Maria Ponti · Liyuan Liu · Matheus Pereira · Nicolas Le Roux · Alessandro Sordoni -
2022 : Attention for Compositional Modularity »
Oleksiy Ostapenko · Pau Rodriguez · Alexandre Lacoste · Laurent Charlin -
2022 : Broken Neural Scaling Laws »
Ethan Caballero · Kshitij Gupta · Irina Rish · David Krueger -
2022 : Reducing Forgetting in Federated Learning with Truncated Cross-Entropy »
Gwen Legate · Lucas Page-Caccia · Eugene Belilovsky -
2022 : Mutual Information Regularized Offline Reinforcement Learning »
Xiao Ma · Bingyi Kang · Zhongwen Xu · Min Lin · Shuicheng Yan -
2022 : Exploring the Design Space of Generative Diffusion Processes for Sparse Graphs »
Pierre-André Noël · Pau Rodriguez -
2022 : HloEnv: A Graph Rewrite Environment for Deep Learning Compiler Optimization Research »
Chin Yang Oh · Kunhao Zheng · Bingyi Kang · Xinyi Wan · Zhongwen Xu · Shuicheng Yan · Min Lin · Yangzihao Wang -
2022 : Building a Subspace of Policies for Scalable Continual Learning »
Jean-Baptiste Gaya · Thang Long Doan · Lucas Page-Caccia · Laure Soulier · Ludovic Denoyer · Roberta Raileanu -
2022 : Constraining Low-level Representations to Define Effective Confidence Scores »
Joao Monteiro · Pau Rodriguez · Pierre-Andre Noel · Issam Hadj Laradji · David Vázquez -
2022 : Broken Neural Scaling Laws »
Ethan Caballero · kshitij Gupta · Irina Rish · David Krueger -
2023 Poster: On Evaluating Adversarial Robustness of Large Vision-Language Models »
Yunqing Zhao · Tianyu Pang · Chao Du · Xiao Yang · Chongxuan LI · Ngai-Man (Man) Cheung · Min Lin -
2023 Poster: Joint Bayesian Inference of Graphical Structure and Parameters with a Single Generative Flow Network »
Tristan Deleu · Mizu Nishikawa-Toomey · Jithendaraa Subramanian · Nikolay Malkin · Laurent Charlin · Yoshua Bengio -
2023 Poster: Multi-Head Adapter Routing for Cross-Task Generalization »
Lucas Page-Caccia · Edoardo Maria Ponti · Zhan Su · Matheus Pereira · Nicolas Le Roux · Alessandro Sordoni -
2023 Poster: On Calibrating Diffusion Probabilistic Models »
Tianyu Pang · Cheng Lu · Chao Du · Min Lin · Shuicheng Yan · Zhijie Deng -
2023 Poster: DeepPCR: Parallelizing Sequential Operations in Neural Networks »
Federico Danieli · Miguel Sarabia · Xavier Suau Cuadros · Pau Rodriguez · Luca Zappella -
2023 Poster: CADet: Fully Self-Supervised Out-Of-Distribution Detection With Contrastive Learning »
Charles Guille-Escuret · Pau Rodriguez · David Vazquez · Ioannis Mitliagkas · Joao Monteiro -
2023 Poster: Guiding The Last Layer in Federated Learning with Pre-Trained Models »
Gwen Legate · Nicolas Bernier · Lucas Page-Caccia · Edouard Oyallon · Eugene Belilovsky -
2023 Poster: NU-MCC: Multiview Compressive Coding with Neighborhood Decoder and Repulsive UDF »
Stefan Lionar · Xiangyu Xu · Min Lin · Gim Hee Lee -
2023 Poster: Mutual Information Regularized Offline Reinforcement Learning »
Xiao Ma · Bingyi Kang · Zhongwen Xu · Min Lin · Shuicheng Yan -
2023 Poster: Group Robust Classification Without Any Group Information »
Christos Tsirigotis · Joao Monteiro · Pau Rodriguez · David Vazquez · Aaron Courville -
2023 Poster: GEO-Bench: Toward Foundation Models for Earth Monitoring »
Alexandre Lacoste · Nils Lehmann · Pau Rodriguez · Evan Sherwin · Hannah Kerner · Björn Lütjens · Jeremy Irvin · David Dao · Hamed Alemohammad · Alexandre Drouin · Mehmet Gunturkun · Gabriel Huang · David Vazquez · Dava Newman · Yoshua Bengio · Stefano Ermon · Xiaoxiang Zhu -
2022 Poster: EnvPool: A Highly Parallel Reinforcement Learning Environment Execution Engine »
Jiayi Weng · Min Lin · Shengyi Huang · Bo Liu · Denys Makoviichuk · Viktor Makoviychuk · Zichen Liu · Yufan Song · Ting Luo · Yukun Jiang · Zhongwen Xu · Shuicheng Yan -
2021 : Machine Learning for Combinatorial Optimization + Q&A »
Maxime Gasse · Simon Bowly · Chris Cameron · Quentin Cappart · Jonas Charfreitag · Laurent Charlin · Shipra Agrawal · Didier Chetelat · Justin Dumouchelle · Ambros Gleixner · Aleksandr Kazachkov · Elias Khalil · Pawel Lichocki · Andrea Lodi · Miles Lubin · Christopher Morris · Dimitri Papageorgiou · Augustin Parjadis · Sebastian Pokutta · Antoine Prouvost · Yuandong Tian · Lara Scavuzzo · Giulia Zarpellon -
2021 Poster: Continual Learning via Local Module Composition »
Oleksiy Ostapenko · Pau Rodriguez · Massimo Caccia · Laurent Charlin -
2021 Poster: Pretraining Representations for Data-Efficient Reinforcement Learning »
Max Schwarzer · Nitarshan Rajkumar · Michael Noukhovitch · Ankesh Anand · Laurent Charlin · R Devon Hjelm · Philip Bachman · Aaron Courville -
2021 Poster: How Should Pre-Trained Language Models Be Fine-Tuned Towards Adversarial Robustness? »
Xinshuai Dong · Anh Tuan Luu · Min Lin · Shuicheng Yan · Hanwang Zhang -
2021 Poster: Learning where to learn: Gradient sparsity in meta and continual learning »
Johannes von Oswald · Dominic Zhao · Seijin Kobayashi · Simon Schug · Massimo Caccia · Nicolas Zucchet · João Sacramento -
2020 : DeepFish: A realistic fish‑habitat dataset to evaluate algorithms for underwater visual analysis »
Alzayat Saleh · Issam Hadj Laradji · David Vázquez -
2020 Poster: Differentiable Causal Discovery from Interventional Data »
Philippe Brouillard · Sébastien Lachapelle · Alexandre Lacoste · Simon Lacoste-Julien · Alexandre Drouin -
2020 Poster: Synbols: Probing Learning Algorithms with Synthetic Datasets »
Alexandre Lacoste · Pau Rodríguez López · Frederic Branchaud-Charron · Parmida Atighehchian · Massimo Caccia · Issam Hadj Laradji · Alexandre Drouin · Matthew Craddock · Laurent Charlin · David Vázquez -
2020 Spotlight: Differentiable Causal Discovery from Interventional Data »
Philippe Brouillard · Sébastien Lachapelle · Alexandre Lacoste · Simon Lacoste-Julien · Alexandre Drouin -
2020 Session: Orals & Spotlights Track 16: Continual/Meta/Misc Learning »
Laurent Charlin · Cedric Archambeau -
2019 Workshop: Tackling Climate Change with ML »
David Rolnick · Priya Donti · Lynn Kaack · Alexandre Lacoste · Tegan Maharaj · Andrew Ng · John Platt · Jennifer Chayes · Yoshua Bengio -
2019 Poster: Online Continual Learning with Maximal Interfered Retrieval »
Rahaf Aljundi · Eugene Belilovsky · Tinne Tuytelaars · Laurent Charlin · Massimo Caccia · Min Lin · Lucas Page-Caccia -
2019 Poster: Gradient based sample selection for online continual learning »
Rahaf Aljundi · Min Lin · Baptiste Goujaud · Yoshua Bengio -
2019 Poster: Exact Combinatorial Optimization with Graph Convolutional Neural Networks »
Maxime Gasse · Didier Chetelat · Nicola Ferroni · Laurent Charlin · Andrea Lodi -
2018 : Poster Session 1 (note there are numerous missing names here, all papers appear in all poster sessions) »
Akhilesh Gotmare · Kenneth Holstein · Jan Brabec · Michal Uricar · Kaleigh Clary · Cynthia Rudin · Sam Witty · Andrew Ross · Shayne O'Brien · Babak Esmaeili · Jessica Forde · Massimo Caccia · Ali Emami · Scott Jordan · Bronwyn Woods · D. Sculley · Rebekah Overdorf · Nicolas Le Roux · Peter Henderson · Brandon Yang · Tzu-Yu Liu · David Jensen · Niccolo Dalmasso · Weitang Liu · Paul Marc TRICHELAIR · Jun Ki Lee · Akanksha Atrey · Matt Groh · Yotam Hechtlinger · Emma Tosch -
2018 Poster: Towards Deep Conversational Recommendations »
Raymond Li · Samira Ebrahimi Kahou · Hannes Schulz · Vincent Michalski · Laurent Charlin · Chris Pal -
2018 Poster: Improving Explorability in Variational Inference with Annealed Variational Objectives »
Chin-Wei Huang · Shawn Tan · Alexandre Lacoste · Aaron Courville -
2018 Poster: TADAM: Task dependent adaptive metric for improved few-shot learning »
Boris Oreshkin · Pau Rodríguez López · Alexandre Lacoste -
2014 Poster: Content-based recommendations with Poisson factorization »
Prem Gopalan · Laurent Charlin · David Blei -
2006 Poster: Automated Hierarchy Discovery for Planning in Partially Observable Domains »
Laurent Charlin · Pascal Poupart · Romy Shioda