Timezone: »
The ability to perform effective planning is crucial for building an instruction-following agent. When navigating through a new environment, an agent is challenged with (1) connecting the natural language instructions with its progressively growing knowledge of the world; and (2) performing long-range planning and decision making in the form of effective exploration and error correction. Current methods are still limited on both fronts despite extensive efforts. In this paper, we introduce Evolving Graphical Planner (EGP), a module that allows global planning for navigation based on raw sensory input. The module dynamically constructs a graphical representation, generalizes the local action space to allow for more flexible decision making, and performs efficient planning on a proxy representation. We demonstrate our model on a challenging Vision-and-Language Navigation (VLN) task with photorealistic images, and achieve superior performance compared to previous navigation architectures. Concretely, we achieve 53% success rate on the test split of Room-to-Room navigation task (Anderson et al.) through pure imitation learning, outperforming previous architectures by up to 5%.
Author Information
Zhiwei Deng (Princeton University)
Karthik Narasimhan (Princeton University)
Olga Russakovsky (Princeton University)
More from the Same Authors
-
2021 Spotlight: Safe Reinforcement Learning with Natural Language Constraints »
Tsung-Yen Yang · Michael Y Hu · Yinlam Chow · Peter J. Ramadge · Karthik Narasimhan -
2022 Poster: Remember the Past: Distilling Datasets into Addressable Memories for Neural Networks »
Zhiwei Deng · Olga Russakovsky -
2022 Poster: Enabling Detailed Action Recognition Evaluation Through Video Dataset Augmentation »
Jihoon Chung · Yu Wu · Olga Russakovsky -
2021 : Past and Future of data centric AI »
Olga Russakovsky -
2021 : Live panel: The future of ImageNet »
Matthias Bethge · Vittorio Ferrari · Olga Russakovsky -
2021 : Fairness and privacy aspects of ImageNet »
Olga Russakovsky · Kaiyu Yang -
2021 Poster: Safe Reinforcement Learning with Natural Language Constraints »
Tsung-Yen Yang · Michael Y Hu · Yinlam Chow · Peter J. Ramadge · Karthik Narasimhan -
2021 Poster: SILG: The Multi-domain Symbolic Interactive Language Grounding Benchmark »
Victor Zhong · Austin W. Hanjie · Sida Wang · Karthik Narasimhan · Luke Zettlemoyer -
2020 : Invited talk - Bringing Back Text Understanding into Text-based Games - Karthik Narasimhan »
Karthik Narasimhan -
2020 Poster: Multimodal Graph Networks for Compositional Generalization in Visual Question Answering »
Raeid Saqur · Karthik Narasimhan -
2019 Poster: A Generalized Algorithm for Multi-Objective Reinforcement Learning and Policy Adaptation »
Runzhe Yang · Xingyuan Sun · Karthik Narasimhan -
2018 : Harnessing the synergy between natural language and interactive learning »
Karthik Narasimhan -
2014 Workshop: Challenges in Machine Learning workshop (CiML 2014) »
Isabelle Guyon · Evelyne Viegas · Percy Liang · Olga Russakovsky · Rinat Sergeev · Gábor Melis · Michele Sebag · Gustavo Stolovitzky · Jaume Bacardit · Michael S Kim · Ben Hamner -
2006 Poster: Training Conditional Random Fields for Maximum Parse Accuracy »
Samuel Gross · Olga Russakovsky · Chuong B Do · Serafim Batzoglou