Timezone: »

Self-Supervised Learning by Cross-Modal Audio-Video Clustering
Humam Alwassel · Dhruv Mahajan · Bruno Korbar · Lorenzo Torresani · Bernard Ghanem · Du Tran

Tue Dec 08 09:00 AM -- 11:00 AM (PST) @ Poster Session 1 #279

Visual and audio modalities are highly correlated, yet they contain different information. Their strong correlation makes it possible to predict the semantics of one from the other with good accuracy. Their intrinsic differences make cross-modal prediction a potentially more rewarding pretext task for self-supervised learning of video and audio representations compared to within-modality learning. Based on this intuition, we propose Cross-Modal Deep Clustering (XDC), a novel self-supervised method that leverages unsupervised clustering in one modality (e.g., audio) as a supervisory signal for the other modality (e.g., video). This cross-modal supervision helps XDC utilize the semantic correlation and the differences between the two modalities. Our experiments show that XDC outperforms single-modality clustering and other multi-modal variants. XDC achieves state-of-the-art accuracy among self-supervised methods on multiple video and audio benchmarks. Most importantly, our video model pretrained on large-scale unlabeled data significantly outperforms the same model pretrained with full-supervision on ImageNet and Kinetics for action recognition on HMDB51 and UCF101. To the best of our knowledge, XDC is the first self-supervised learning method that outperforms large-scale fully-supervised pretraining for action recognition on the same architecture.

Author Information

Humam Alwassel (KAUST)
Dhruv Mahajan (Facebook)
Bruno Korbar (Facebook)
Lorenzo Torresani (Facebook AI)

Lorenzo Torresani is an Associate Professor with tenure in the Computer Science Department at Dartmouth College and a Research Scientist at Facebook AI. He received a Laurea Degree in Computer Science with summa cum laude honors from the University of Milan (Italy) in 1996, and an M.S. and a Ph.D. in Computer Science from Stanford University in 2001 and 2005, respectively. In the past, he has worked at several industrial research labs including Microsoft Research Cambridge, Like.com and Digital Persona. His research interests are in computer vision and deep learning. He is the recipient of several awards, including a CVPR best student paper prize, a National Science Foundation CAREER Award, a Google Faculty Research Award, three Facebook Faculty Awards, and a Fulbright U.S. Scholar Award.

Bernard Ghanem (KAUST)
Du Tran (Facebook AI)

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors