Timezone: »
Previous methods decompose blind super resolution (SR) problem into two sequential steps: \textit{i}) estimating blur kernel from given low-resolution (LR) image and \textit{ii}) restoring SR image based on estimated kernel. This two-step solution involves two independently trained models, which may not well compatible with each other. Small estimation error of the first step could cause severe performance drop of the second one. While on the other hand, the first step can only utilize limited information from LR image, which makes it difficult to predict highly accurate blur kernel. Towards these issues, instead of considering these two steps separately, we adopt an alternating optimization algorithm, which can estimate blur kernel and restore SR image in a single model. Specifically, we design two convolutional neural modules, namely \textit{Restorer} and \textit{Estimator}. \textit{Restorer} restores SR image based on predicted kernel, and \textit{Estimator} estimates blur kernel with the help of restored SR image. We alternate these two modules repeatedly and unfold this process to form an end-to-end trainable network. In this way, \textit{Estimator} utilizes information from both LR and SR images, which makes the estimation of blur kernel easier. More importantly, \textit{Restorer} is trained with the kernel estimated by \textit{Estimator}, instead of ground-truth kernel, thus \textit{Restorer} could be more tolerant to the estimation error of \textit{Estimator}. Extensive experiments on synthetic datasets and real-world images show that our model can largely outperform state-of-the-art methods and produce more visually favorable results at much higher speed. The source code will be publicly available.
Author Information
zhengxiong luo (Institute of Automation, Chinese Academy of Sciences)
Yan Huang (CRIPAC, CASIA)
Shang Li (CASIA)
Liang Wang (NLPR, China)
Tieniu Tan (Chinese Academy of Sciences)
More from the Same Authors
-
2022 Spotlight: MACK: Multimodal Aligned Conceptual Knowledge for Unpaired Image-text Matching »
Yan Huang · Yuming Wang · Yunan Zeng · Liang Wang -
2022 Poster: MACK: Multimodal Aligned Conceptual Knowledge for Unpaired Image-text Matching »
Yan Huang · Yuming Wang · Yunan Zeng · Liang Wang -
2021 Poster: Landmark-RxR: Solving Vision-and-Language Navigation with Fine-Grained Alignment Supervision »
Keji He · Yan Huang · Qi Wu · Jianhua Yang · Dong An · Shuanglin Sima · Liang Wang -
2019 Poster: Efficient Neural Architecture Transformation Search in Channel-Level for Object Detection »
Junran Peng · Ming Sun · ZHAO-XIANG ZHANG · Tieniu Tan · Junjie Yan -
2018 Poster: IntroVAE: Introspective Variational Autoencoders for Photographic Image Synthesis »
Huaibo Huang · zhihang li · Ran He · Zhenan Sun · Tieniu Tan -
2017 Poster: Deep Supervised Discrete Hashing »
Qi Li · Zhenan Sun · Ran He · Tieniu Tan -
2015 Poster: Bidirectional Recurrent Convolutional Networks for Multi-Frame Super-Resolution »
Yan Huang · Wei Wang · Liang Wang -
2013 Poster: Relevance Topic Model for Unstructured Social Group Activity Recognition »
Fang Zhao · Yongzhen Huang · Liang Wang · Tieniu Tan