Timezone: »
Poster
Generalised Bayesian Filtering via Sequential Monte Carlo
Ayman Boustati · Omer Deniz Akyildiz · Theodoros Damoulas · Adam Johansen
We introduce a framework for inference in general state-space hidden Markov models (HMMs) under likelihood misspecification. In particular, we leverage the loss-theoretic perspective of Generalized Bayesian Inference (GBI) to define generalised filtering recursions in HMMs, that can tackle the problem of inference under model misspecification. In doing so, we arrive at principled procedures for robust inference against observation contamination by utilising the $\beta$-divergence. Operationalising the proposed framework is made possible via sequential Monte Carlo methods (SMC), where the standard particle methods, and their associated convergence results, are readily adapted to the new setting. We demonstrate our approach to object tracking and Gaussian process regression problems, and observe improved performance over standard filtering algorithms.
Author Information
Ayman Boustati (University of Warwick)
Omer Deniz Akyildiz (University of Warwick and The Alan Turing Institute)
Theodoros Damoulas (University of Warwick & The Alan Turing Institute)
Adam Johansen (University of Warwick)
More from the Same Authors
-
2020 : Scalable Multitask Latent Force Models with Applications to Predicting Lithium-ion Concentration »
Daniel Tait · Ferran Brosa Planella · Widanalage Dhammika Widanage · Theodoros Damoulas -
2021 : Robust Bayesian Inference for Simulator-based Models via the MMD Posterior Bootstrap »
Harita Dellaporta · Jeremias Knoblauch · Theodoros Damoulas · Francois-Xavier Briol -
2021 Poster: Dynamic Causal Bayesian Optimization »
Virginia Aglietti · Neil Dhir · Javier González · Theodoros Damoulas -
2021 Poster: Higher Order Kernel Mean Embeddings to Capture Filtrations of Stochastic Processes »
Cristopher Salvi · Maud Lemercier · Chong Liu · Blanka Horvath · Theodoros Damoulas · Terry Lyons -
2021 Poster: Spatio-Temporal Variational Gaussian Processes »
Oliver Hamelijnck · William Wilkinson · Niki Loppi · Arno Solin · Theodoros Damoulas -
2020 Poster: Multi-task Causal Learning with Gaussian Processes »
Virginia Aglietti · Theodoros Damoulas · Mauricio Álvarez · Javier González -
2020 Poster: VarGrad: A Low-Variance Gradient Estimator for Variational Inference »
Lorenz Richter · Ayman Boustati · Nikolas Nüsken · Francisco Ruiz · Omer Deniz Akyildiz -
2019 Poster: Structured Variational Inference in Continuous Cox Process Models »
Virginia Aglietti · Edwin Bonilla · Theodoros Damoulas · Sally Cripps -
2019 Poster: Multi-resolution Multi-task Gaussian Processes »
Oliver Hamelijnck · Theodoros Damoulas · Kangrui Wang · Mark Girolami -
2018 Poster: Doubly Robust Bayesian Inference for Non-Stationary Streaming Data with $\beta$-Divergences »
Jeremias Knoblauch · Jack E Jewson · Theodoros Damoulas -
2013 Workshop: Machine Learning for Sustainability »
Edwin Bonilla · Thomas Dietterich · Theodoros Damoulas · Andreas Krause · Daniel Sheldon · Iadine Chades · J. Zico Kolter · Bistra Dilkina · Carla Gomes · Hugo P Simao -
2012 Workshop: Human Computation for Science and Computational Sustainability »
Theodoros Damoulas · Thomas Dietterich · Edith Law · Serge Belongie