Timezone: »
Standard Convolutional Neural Networks (CNNs) designed for computer vision tasks tend to have large intermediate activation maps. These require large working memory and are thus unsuitable for deployment on resource-constrained devices typically used for inference on the edge. Aggressively downsampling the images via pooling or strided convolutions can address the problem but leads to a significant decrease in accuracy due to gross aggregation of the feature map by standard pooling operators. In this paper, we introduce RNNPool, a novel pooling operator based on Recurrent Neural Networks (RNNs), that efficiently aggregates features over large patches of an image and rapidly downsamples activation maps. Empirical evaluation indicates that an RNNPool layer can effectively replace multiple blocks in a variety of architectures such as MobileNets, DenseNet when applied to standard vision tasks like image classification and face detection. That is, RNNPool can significantly decrease computational complexity and peak memory usage for inference while retaining comparable accuracy. We use RNNPool with the standard S3FD architecture to construct a face detection method that achieves state-of-the-art MAP for tiny ARM Cortex-M4 class microcontrollers with under 256 KB of RAM. Code is released at https://github.com/Microsoft/EdgeML.
Author Information
Oindrila Saha (Microsoft Research)
Aditya Kusupati (University of Washington)
Harsha Vardhan Simhadri (Microsoft Research)
Manik Varma (Microsoft Research India)
Prateek Jain (Microsoft Research)
Related Events (a corresponding poster, oral, or spotlight)
-
2020 Poster: RNNPool: Efficient Non-linear Pooling for RAM Constrained Inference »
Thu. Dec 10th 05:00 -- 07:00 AM Room Poster Session 4 #1321
More from the Same Authors
-
2021 Spotlight: Near-optimal Offline and Streaming Algorithms for Learning Non-Linear Dynamical Systems »
Suhas Kowshik · Dheeraj Nagaraj · Prateek Jain · Praneeth Netrapalli -
2021 Spotlight: Differentially Private Model Personalization »
Prateek Jain · John Rush · Adam Smith · Shuang Song · Abhradeep Guha Thakurta -
2022 : MET: Masked Encoding for Tabular Data »
Kushal Majmundar · Sachin Goyal · Praneeth Netrapalli · Prateek Jain -
2022 : Learning an Invertible Output Mapping Can Mitigate Simplicity Bias in Neural Networks »
Sravanti Addepalli · Anshul Nasery · Venkatesh Babu R · Praneeth Netrapalli · Prateek Jain -
2022 : Matryoshka Representations for Adaptive Deployment »
Aniket Rege · Aditya Kusupati · Gantavya Bhatt · Matthew Wallingford · Aditya Sinha · Vivek Ramanujan · William Howard-Snyder · Kaifeng Chen · Sham Kakade · Prateek Jain · Ali Farhadi -
2022 Poster: DP-PCA: Statistically Optimal and Differentially Private PCA »
Xiyang Liu · Weihao Kong · Prateek Jain · Sewoong Oh -
2022 Poster: S3GC: Scalable Self-Supervised Graph Clustering »
Fnu Devvrit · Aditya Sinha · Inderjit Dhillon · Prateek Jain -
2022 Poster: Reproducibility in Optimization: Theoretical Framework and Limits »
Kwangjun Ahn · Prateek Jain · Ziwei Ji · Satyen Kale · Praneeth Netrapalli · Gil I Shamir -
2022 Poster: Matryoshka Representation Learning »
Aditya Kusupati · Gantavya Bhatt · Aniket Rege · Matthew Wallingford · Aditya Sinha · Vivek Ramanujan · William Howard-Snyder · Kaifeng Chen · Sham Kakade · Prateek Jain · Ali Farhadi -
2021 Poster: Differentially Private Model Personalization »
Prateek Jain · John Rush · Adam Smith · Shuang Song · Abhradeep Guha Thakurta -
2021 Poster: Streaming Linear System Identification with Reverse Experience Replay »
Suhas Kowshik · Dheeraj Nagaraj · Prateek Jain · Praneeth Netrapalli -
2021 Poster: LLC: Accurate, Multi-purpose Learnt Low-dimensional Binary Codes »
Aditya Kusupati · Matthew Wallingford · Vivek Ramanujan · Raghav Somani · Jae Sung Park · Krishna Pillutla · Prateek Jain · Sham Kakade · Ali Farhadi -
2021 : Billion-Scale Approximate Nearest Neighbor Search Challenge + Q&A »
Harsha Vardhan Simhadri · George Williams · Martin Aumüller · Artem Babenko · Dmitry Baranchuk · Qi Chen · Matthijs Douze · Ravishankar Krishnawamy · Gopal Srinivasa · Suhas Jayaram Subramanya · Jingdong Wang -
2021 Poster: Do Input Gradients Highlight Discriminative Features? »
Harshay Shah · Prateek Jain · Praneeth Netrapalli -
2021 Poster: Near-optimal Offline and Streaming Algorithms for Learning Non-Linear Dynamical Systems »
Suhas Kowshik · Dheeraj Nagaraj · Prateek Jain · Praneeth Netrapalli -
2021 Poster: Statistically and Computationally Efficient Linear Meta-representation Learning »
Kiran Thekumparampil · Prateek Jain · Praneeth Netrapalli · Sewoong Oh -
2020 Poster: Projection Efficient Subgradient Method and Optimal Nonsmooth Frank-Wolfe Method »
Kiran Thekumparampil · Prateek Jain · Praneeth Netrapalli · Sewoong Oh -
2020 Spotlight: Projection Efficient Subgradient Method and Optimal Nonsmooth Frank-Wolfe Method »
Kiran Thekumparampil · Prateek Jain · Praneeth Netrapalli · Sewoong Oh -
2020 Poster: The Pitfalls of Simplicity Bias in Neural Networks »
Harshay Shah · Kaustav Tamuly · Aditi Raghunathan · Prateek Jain · Praneeth Netrapalli -
2020 Poster: Least Squares Regression with Markovian Data: Fundamental Limits and Algorithms »
Dheeraj Nagaraj · Xian Wu · Guy Bresler · Prateek Jain · Praneeth Netrapalli -
2020 Spotlight: Least Squares Regression with Markovian Data: Fundamental Limits and Algorithms »
Dheeraj Nagaraj · Xian Wu · Guy Bresler · Prateek Jain · Praneeth Netrapalli -
2019 Poster: DiskANN: Fast Accurate Billion-point Nearest Neighbor Search on a Single Node »
Suhas Jayaram Subramanya · Fnu Devvrit · Harsha Vardhan Simhadri · Ravishankar Krishnawamy · Rohan Kadekodi -
2019 Poster: Shallow RNN: Accurate Time-series Classification on Resource Constrained Devices »
Don Dennis · Durmus Alp Emre Acar · Vikram Mandikal · Vinu Sankar Sadasivan · Venkatesh Saligrama · Harsha Vardhan Simhadri · Prateek Jain -
2018 Poster: FastGRNN: A Fast, Accurate, Stable and Tiny Kilobyte Sized Gated Recurrent Neural Network »
Aditya Kusupati · Manish Singh · Kush Bhatia · Ashish Kumar · Prateek Jain · Manik Varma -
2018 Poster: Multiple Instance Learning for Efficient Sequential Data Classification on Resource-constrained Devices »
Don Dennis · Chirag Pabbaraju · Harsha Vardhan Simhadri · Prateek Jain -
2017 : Introduction by Manik Varma »
Manik Varma -
2017 Workshop: Extreme Classification: Multi-class & Multi-label Learning in Extremely Large Label Spaces »
Manik Varma · Marius Kloft · Krzysztof Dembczynski -
2016 Workshop: Extreme Classification: Multi-class and Multi-label Learning in Extremely Large Label Spaces »
Moustapha Cisse · Manik Varma · Samy Bengio -
2015 Workshop: Extreme Classification 2015: Multi-class and Multi-label Learning in Extremely Large Label Spaces »
Manik Varma · Moustapha M Cisse -
2015 Poster: Sparse Local Embeddings for Extreme Multi-label Classification »
Kush Bhatia · Himanshu Jain · Purushottam Kar · Manik Varma · Prateek Jain -
2013 Workshop: Extreme Classification: Multi-Class & Multi-Label Learning with Millions of Categories »
Manik Varma · John Langford -
2010 Spotlight: Multiple Kernel Learning and the SMO Algorithm »
S.V.N. Vishwanathan · Zhaonan sun · Nawanol T Ampornpunt · Manik Varma -
2010 Poster: Multiple Kernel Learning and the SMO Algorithm »
S.V.N. Vishwanathan · Zhaonan sun · Nawanol T Ampornpunt · Manik Varma