Timezone: »
In this work we present novel differentially private identity (goodness-of-fit) testers for natural and widely studied classes of multivariate product distributions: Gaussians in R^d with known covariance and product distributions over {\pm 1}^d. Our testers have improved sample complexity compared to those derived from previous techniques, and are the first testers whose sample complexity matches the order-optimal minimax sample complexity of O(d^1/2/alpha^2) in many parameter regimes. We construct two types of testers, exhibiting tradeoffs between sample complexity and computational complexity. Finally, we provide a two-way reduction between testing a subclass of multivariate product distributions and testing univariate distributions, and thereby obtain upper and lower bounds for testing this subclass of product distributions.
Author Information
Clément L Canonne (IBM Research)
Gautam Kamath (University of Waterloo)
Audra McMillan (Apple)
Jonathan Ullman (Northeastern University)
Lydia Zakynthinou (Northeastern University)
Related Events (a corresponding poster, oral, or spotlight)
-
2020 Poster: Private Identity Testing for High-Dimensional Distributions »
Tue. Dec 8th 05:00 -- 07:00 PM Room Poster Session 1 #263
More from the Same Authors
-
2021 Spotlight: Covariance-Aware Private Mean Estimation Without Private Covariance Estimation »
Gavin Brown · Marco Gaboardi · Adam Smith · Jonathan Ullman · Lydia Zakynthinou -
2021 : Mean Estimation with User-level Privacy under Data Heterogeneity »
Rachel Cummings · Vitaly Feldman · Audra McMillan · Kunal Talwar -
2022 : Choosing Public Datasets for Private Machine Learning via Gradient Subspace Distance »
Xin Gu · Gautam Kamath · Steven Wu -
2022 : Hidden Poison: Machine Unlearning Enables Camouflaged Poisoning Attacks »
Jimmy Di · Jack Douglas · Jayadev Acharya · Gautam Kamath · Ayush Sekhari -
2022 : Indiscriminate Data Poisoning Attacks on Neural Networks »
Yiwei Lu · Gautam Kamath · Yaoliang Yu -
2022 : Indiscriminate Data Poisoning Attacks on Neural Networks »
Yiwei Lu · Gautam Kamath · Yaoliang Yu -
2022 : Hidden Poison: Machine unlearning enables camouflaged poisoning attacks »
Jimmy Di · Jack Douglas · Jayadev Acharya · Gautam Kamath · Ayush Sekhari -
2022 : Private GANs, Revisited »
Alex Bie · Gautam Kamath · Guojun Zhang -
2022 Poster: Mean Estimation with User-level Privacy under Data Heterogeneity »
Rachel Cummings · Vitaly Feldman · Audra McMillan · Kunal Talwar -
2022 Poster: Nearly-Tight Bounds for Testing Histogram Distributions »
Clément L Canonne · Ilias Diakonikolas · Daniel Kane · Sihan Liu -
2022 Poster: New Lower Bounds for Private Estimation and a Generalized Fingerprinting Lemma »
Gautam Kamath · Argyris Mouzakis · Vikrant Singhal -
2022 Poster: Independence Testing for Bounded Degree Bayesian Networks »
Arnab Bhattacharyya · Clément L Canonne · Qiping Yang -
2022 Poster: Robust Testing in High-Dimensional Sparse Models »
Anand Jerry George · Clément L Canonne -
2022 Poster: Private Estimation with Public Data »
Alex Bie · Gautam Kamath · Vikrant Singhal -
2021 Poster: Covariance-Aware Private Mean Estimation Without Private Covariance Estimation »
Gavin Brown · Marco Gaboardi · Adam Smith · Jonathan Ullman · Lydia Zakynthinou -
2021 Poster: Enabling Fast Differentially Private SGD via Just-in-Time Compilation and Vectorization »
Pranav Subramani · Nicholas Vadivelu · Gautam Kamath -
2021 Poster: Remember What You Want to Forget: Algorithms for Machine Unlearning »
Ayush Sekhari · Jayadev Acharya · Gautam Kamath · Ananda Theertha Suresh -
2020 Poster: The Discrete Gaussian for Differential Privacy »
Clément L Canonne · Gautam Kamath · Thomas Steinke -
2020 Social: Data Privacy: Academia, Industry, Policy, and Society »
Gautam Kamath -
2020 Poster: CoinPress: Practical Private Mean and Covariance Estimation »
Sourav Biswas · Yihe Dong · Gautam Kamath · Jonathan Ullman -
2020 Poster: Auditing Differentially Private Machine Learning: How Private is Private SGD? »
Matthew Jagielski · Jonathan Ullman · Alina Oprea -
2019 : Poster Session »
Clement Canonne · Kwang-Sung Jun · Seth Neel · Di Wang · Giuseppe Vietri · Liwei Song · Jonathan Lebensold · Huanyu Zhang · Lovedeep Gondara · Ang Li · FatemehSadat Mireshghallah · Jinshuo Dong · Anand D Sarwate · Antti Koskela · Joonas Jälkö · Matt Kusner · Dingfan Chen · Mi Jung Park · Ashwin Machanavajjhala · Jayashree Kalpathy-Cramer · · Vitaly Feldman · Andrew Tomkins · Hai Phan · Hossein Esfandiari · Mimansa Jaiswal · Mrinank Sharma · Jeff Druce · Casey Meehan · Zhengli Zhao · Hsiang Hsu · Davis Railsback · Abraham Flaxman · · Julius Adebayo · Aleksandra Korolova · Jiaming Xu · Naoise Holohan · Samyadeep Basu · Matthew Joseph · My Thai · Xiaoqian Yang · Ellen Vitercik · Michael Hutchinson · Chenghong Wang · Gregory Yauney · Yuchao Tao · Chao Jin · Si Kai Lee · Audra McMillan · Rauf Izmailov · Jiayi Guo · Siddharth Swaroop · Tribhuvanesh Orekondy · Hadi Esmaeilzadeh · Kevin Procopio · Alkis Polyzotis · Jafar Mohammadi · Nitin Agrawal -
2019 Poster: Private Hypothesis Selection »
Mark Bun · Gautam Kamath · Thomas Steinke · Steven Wu -
2019 Poster: Online Learning via the Differential Privacy Lens »
Jacob Abernethy · Young H Jung · Chansoo Lee · Audra McMillan · Ambuj Tewari -
2019 Spotlight: Online Learning via the Differential Privacy Lens »
Jacob Abernethy · Young H Jung · Chansoo Lee · Audra McMillan · Ambuj Tewari -
2019 Poster: Differentially Private Algorithms for Learning Mixtures of Separated Gaussians »
Gautam Kamath · Or Sheffet · Vikrant Singhal · Jonathan Ullman -
2019 Poster: Efficiently Estimating Erdos-Renyi Graphs with Node Differential Privacy »
Jonathan Ullman · Adam Sealfon -
2018 Poster: The Limits of Post-Selection Generalization »
Jonathan Ullman · Adam Smith · Kobbi Nissim · Uri Stemmer · Thomas Steinke -
2018 Poster: Improved Algorithms for Collaborative PAC Learning »
Huy Nguyen · Lydia Zakynthinou -
2018 Poster: Local Differential Privacy for Evolving Data »
Matthew Joseph · Aaron Roth · Jonathan Ullman · Bo Waggoner -
2018 Spotlight: Local Differential Privacy for Evolving Data »
Matthew Joseph · Aaron Roth · Jonathan Ullman · Bo Waggoner -
2017 Poster: Concentration of Multilinear Functions of the Ising Model with Applications to Network Data »
Constantinos Daskalakis · Nishanth Dikkala · Gautam Kamath -
2016 Poster: Privacy Odometers and Filters: Pay-as-you-Go Composition »
Ryan Rogers · Salil Vadhan · Aaron Roth · Jonathan Ullman -
2015 Poster: Optimal Testing for Properties of Distributions »
Jayadev Acharya · Constantinos Daskalakis · Gautam Kamath -
2015 Spotlight: Optimal Testing for Properties of Distributions »
Jayadev Acharya · Constantinos Daskalakis · Gautam Kamath