Timezone: »
Invited Talk 1: Geometric deep learning for 3D human body synthesis
Michael Bronstein
Geometric deep learning, a new class of ML methods trying to extend the basic building blocks of deep neural architectures to geometric data (point clouds, graphs, and meshes), has recently excelled in many challenging analysis tasks in computer vision and graphics such as deformable 3D shape correspondence. In this talk, I will present recent research efforts in 3D shape synthesis, focusing in particular on the human body, face, and hands.
Author Information
Michael Bronstein (USI)
More from the Same Authors
-
2022 : Equivariant 3D-Conditional Diffusion Models for Molecular Linker Design »
Ilia Igashov · Hannes Stärk · Clément Vignac · Victor Garcia Satorras · Pascal Frossard · Max Welling · Michael Bronstein · Bruno Correia -
2022 : Provably Efficient Causal Model-Based Reinforcement Learning for Environment-Agnostic Generalization »
Mirco Mutti · Riccardo De Santi · Emanuele Rossi · Juan Calderon · Michael Bronstein · Marcello Restelli -
2022 : On the Unreasonable Effectiveness of Feature Propagation in Learning on Graphs with Missing Node Features »
Emanuele Rossi · Henry Kenlay · Maria Gorinova · Benjamin Chamberlain · Xiaowen Dong · Michael Bronstein -
2022 : Hyperbolic Deep Reinforcement Learning »
Edoardo Cetin · Benjamin Chamberlain · Michael Bronstein · jonathan j hunt -
2023 Workshop: Temporal Graph Learning Workshop @ NeurIPS 2023 »
Farimah Poursafaei · Shenyang Huang · Kellin Pelrine · Julia Gastinger · Emanuele Rossi · Michael Bronstein · Reihaneh Rabbany -
2022 Workshop: Temporal Graph Learning Workshop »
Reihaneh Rabbany · Jian Tang · Michael Bronstein · Shenyang Huang · Meng Qu · Kellin Pelrine · Jianan Zhao · Farimah Poursafaei · Aarash Feizi -
2022 Poster: Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs »
Cristian Bodnar · Francesco Di Giovanni · Benjamin Chamberlain · Pietro Lió · Michael Bronstein -
2022 Poster: Understanding and Extending Subgraph GNNs by Rethinking Their Symmetries »
Fabrizio Frasca · Beatrice Bevilacqua · Michael Bronstein · Haggai Maron -
2019 Workshop: Graph Representation Learning »
Will Hamilton · Rianne van den Berg · Michael Bronstein · Stefanie Jegelka · Thomas Kipf · Jure Leskovec · Renjie Liao · Yizhou Sun · Petar Veličković