Timezone: »
Classical machine learning research has been focused largely on models, optimizers, and computational challenges. As technical progress and hardware advancements ease these challenges, practitioners are now finding that the limitations and faults of their models are the result of their datasets. This is particularly true of deep networks, which often rely on huge datasets that are too large and unwieldy for domain experts to curate them by hand. This workshop addresses issues in the following areas: data harvesting, dealing with the challenges and opportunities involved in creating and labeling massive datasets; data security, dealing with protecting datasets against risks of poisoning and backdoor attacks; policy, security, and privacy, dealing with the social, ethical, and regulatory issues involved in collecting large datasets, especially with regards to privacy; and data bias, related to the potential of biased datasets to result in biased models that harm members of certain groups. Dates and details can be found at securedata.lol
Fri 6:00 a.m. - 6:30 a.m.
|
Dawn Song (topic TBD)
(Invited talk)
|
Dawn Song 🔗 |
Fri 6:30 a.m. - 7:00 a.m.
|
What Do Our Models Learn?
(Invited talk)
SlidesLive Video » Large-scale vision benchmarks have driven—and often even defined—progress in machine learning. However, these benchmarks are merely proxies for the real-world tasks we actually care about. How well do our benchmarks capture such tasks? In this talk, I will discuss the alignment between our benchmark-driven ML paradigm and the real-world uses cases that motivate it. First, we will explore examples of biases in the ImageNet dataset, and how state-of-the-art models exploit them. We will then demonstrate how these biases arise as a result of design choices in the data collection and curation processes. Throughout, we illustrate how one can leverage relatively standard tools (e.g., crowdsourcing, image processing) to quantify the biases that we observe. Based on joint works with Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras and Kai Xiao. |
Aleksander Madry 🔗 |
Fri 7:00 a.m. - 7:15 a.m.
|
Discussion
(Discussion panel)
|
🔗 |
Fri 7:15 a.m. - 7:30 a.m.
|
Break
|
🔗 |
Fri 7:30 a.m. - 8:00 a.m.
|
Darrell West (TBD)
(Invited talk)
|
Darrell West 🔗 |
Fri 8:00 a.m. - 8:30 a.m.
|
Adversarial, Socially Aware, and Commonsensical Data
(Invited talk)
SlidesLive Video » |
Yejin Choi 🔗 |
Fri 8:30 a.m. - 8:45 a.m.
|
Discussion panel
(Discussion)
|
🔗 |
Fri 8:45 a.m. - 10:00 a.m.
|
Lunch Break
|
🔗 |
Fri 10:00 a.m. - 10:30 a.m.
|
Dataset Curation via Active Learning
(Invited talk)
|
Robert Nowak 🔗 |
Fri 10:30 a.m. - 11:00 a.m.
|
Don't Steal Data
(Invited talk)
|
Liz O'Sullivan 🔗 |
Fri 11:30 a.m. - 1:00 p.m.
|
Poster Session link » | 🔗 |
Author Information
Nathalie Baracaldo Angel (IBM Research AI)
Yonatan Bisk (LTI @ CMU)
Avrim Blum (Toyota Technological Institute at Chicago)
Michael Curry (University of Maryland)
John Dickerson (University of Maryland)
Micah Goldblum (UMD)
Tom Goldstein (University of Maryland)
Bo Li (UIUC)
Avi Schwarzschild (University of Maryland)
More from the Same Authors
-
2020 : An Open Review of OpenReview: A Critical Analysis of the Machine Learning Conference Review Process »
David Tran · Alex Valtchanov · Keshav R Ganapathy · Raymond Feng · Eric Slud · Micah Goldblum · Tom Goldstein -
2021 Spotlight: Excess Capacity and Backdoor Poisoning »
Naren Manoj · Avrim Blum -
2021 : Adversarial GLUE: A Multi-Task Benchmark for Robustness Evaluation of Language Models »
Boxin Wang · Chejian Xu · Shuohang Wang · Zhe Gan · Yu Cheng · Jianfeng Gao · Ahmed Awadallah · Bo Li -
2021 : Execute Order 66: Targeted Data Poisoning for Reinforcement Learning via Minuscule Perturbations »
Harrison Foley · Liam Fowl · Tom Goldstein · Gavin Taylor -
2021 : Certified Robustness for Free in Differentially Private Federated Learning »
Chulin Xie · Yunhui Long · Pin-Yu Chen · Krishnaram Kenthapadi · Bo Li -
2021 : FLoRA: Single-shot Hyper-parameter Optimization for Federated Learning »
Yi Zhou · Parikshit Ram · Theodoros Salonidis · Nathalie Baracaldo Angel · Horst Samulowitz · Heiko Ludwig -
2021 : RVFR: Robust Vertical Federated Learning via Feature Subspace Recovery »
Jing Liu · Chulin Xie · Krishnaram Kenthapadi · Sanmi Koyejo · Bo Li -
2021 : One for One, or All for All: Equilibria and Optimality of Collaboration in Federated Learning »
Richard Phillips · Han Shao · Avrim Blum · Nika Haghtalab -
2021 : On classification of strategic agents who can both game and improve »
Saba Ahmadi · Hedyeh Beyhaghi · Avrim Blum · Keziah Naggita -
2021 : The Strategic Perceptron »
Saba Ahmadi · Hedyeh Beyhaghi · Avrim Blum · Keziah Naggita -
2021 : What Would Jiminy Cricket Do? Towards Agents That Behave Morally »
Dan Hendrycks · Mantas Mazeika · Andy Zou · Sahil Patel · Christine Zhu · Jesus Navarro · Dawn Song · Bo Li · Jacob Steinhardt -
2021 : Learning Revenue-Maximizing Auctions With Differentiable Matching »
Michael Curry · Uro Lyi · Tom Goldstein · John P Dickerson -
2021 : Learning Revenue-Maximizing Auctions With Differentiable Matching »
Michael Curry · Uro Lyi · Tom Goldstein · John P Dickerson -
2021 : One for One, or All for All: Equilibria and Optimality of Collaboration in Federated Learning »
Richard Phillips · Han Shao · Avrim Blum · Nika Haghtalab -
2021 : On classification of strategic agents who can both game and improve »
Saba Ahmadi · Hedyeh Beyhaghi · Avrim Blum · Keziah Naggita -
2021 : The Strategic Perceptron »
Saba Ahmadi · Hedyeh Beyhaghi · Avrim Blum · Keziah Naggita -
2021 : An mHealth Intervention for African American and Hispanic Adults: Preliminary Results from a One-Year Field Test »
Christine Herlihy · John Dickerson -
2021 : An mHealth Intervention for African American and Hispanic Adults: Preliminary Results from a One-Year Field Test »
Christine Herlihy · John Dickerson -
2021 : Contributed Talk 6: FLoRA: Single-shot Hyper-parameter Optimization for Federated Learning »
Yi Zhou · Parikshit Ram · Theodoros Salonidis · Nathalie Baracaldo Angel · Horst Samulowitz · Heiko Ludwig -
2021 : Career and Life: Panel Discussion - Bo Li, Adriana Romero-Soriano, Devi Parikh, and Emily Denton »
Emily Denton · Devi Parikh · Bo Li · Adriana Romero -
2021 : Live Q&A with Bo Li »
Bo Li -
2021 : Invited talk – Trustworthy Machine Learning via Logic Inference, Bo Li »
Bo Li -
2021 Poster: Can You Learn an Algorithm? Generalizing from Easy to Hard Problems with Recurrent Networks »
Avi Schwarzschild · Eitan Borgnia · Arjun Gupta · Furong Huang · Uzi Vishkin · Micah Goldblum · Tom Goldstein -
2021 : Adversarial GLUE: A Multi-Task Benchmark for Robustness Evaluation of Language Models »
Boxin Wang · Chejian Xu · Shuohang Wang · Zhe Gan · Yu Cheng · Jianfeng Gao · Ahmed Awadallah · Bo Li -
2021 Poster: VQ-GNN: A Universal Framework to Scale up Graph Neural Networks using Vector Quantization »
Mucong Ding · Kezhi Kong · Jingling Li · Chen Zhu · John Dickerson · Furong Huang · Tom Goldstein -
2021 Poster: Fair Clustering Under a Bounded Cost »
Seyed Esmaeili · Brian Brubach · Aravind Srinivasan · John Dickerson -
2021 Poster: PreferenceNet: Encoding Human Preferences in Auction Design with Deep Learning »
Neehar Peri · Michael Curry · Samuel Dooley · John Dickerson -
2021 Poster: G-PATE: Scalable Differentially Private Data Generator via Private Aggregation of Teacher Discriminators »
Yunhui Long · Boxin Wang · Zhuolin Yang · Bhavya Kailkhura · Aston Zhang · Carl Gunter · Bo Li -
2021 Poster: Anti-Backdoor Learning: Training Clean Models on Poisoned Data »
Yige Li · Xixiang Lyu · Nodens Koren · Lingjuan Lyu · Bo Li · Xingjun Ma -
2021 Poster: How does a Neural Network's Architecture Impact its Robustness to Noisy Labels? »
Jingling Li · Mozhi Zhang · Keyulu Xu · John Dickerson · Jimmy Ba -
2021 Poster: Adversarial Attack Generation Empowered by Min-Max Optimization »
Jingkang Wang · Tianyun Zhang · Sijia Liu · Pin-Yu Chen · Jiacen Xu · Makan Fardad · Bo Li -
2021 : Reconnaissance Blind Chess + Q&A »
Ryan Gardner · Gino Perrotta · Corey Lowman · Casey Richardson · Andrew Newman · Jared Markowitz · Nathan Drenkow · Bart Paulhamus · Ashley J Llorens · Todd Neller · Raman Arora · Bo Li · Mykel J Kochenderfer -
2021 Poster: Excess Capacity and Backdoor Poisoning »
Naren Manoj · Avrim Blum -
2021 Poster: TRS: Transferability Reduced Ensemble via Promoting Gradient Diversity and Model Smoothness »
Zhuolin Yang · Linyi Li · Xiaojun Xu · Shiliang Zuo · Qian Chen · Pan Zhou · Benjamin Rubinstein · Ce Zhang · Bo Li -
2020 : The Intrinsic Dimension of Images and Its Impact on Learning »
Chen Zhu · Micah Goldblum · Ahmed Abdelkader · Tom Goldstein · Phillip Pope -
2020 Poster: Detection as Regression: Certified Object Detection with Median Smoothing »
Ping-yeh Chiang · Michael Curry · Ahmed Abdelkader · Aounon Kumar · John Dickerson · Tom Goldstein -
2020 Poster: Certifying Confidence via Randomized Smoothing »
Aounon Kumar · Alexander Levine · Soheil Feizi · Tom Goldstein -
2020 Session: Orals & Spotlights Track 24: Learning Theory »
Avrim Blum · Steve Hanneke -
2020 Poster: Adversarially Robust Few-Shot Learning: A Meta-Learning Approach »
Micah Goldblum · Liam Fowl · Tom Goldstein -
2020 Poster: Online Learning with Primary and Secondary Losses »
Avrim Blum · Han Shao -
2020 Poster: MetaPoison: Practical General-purpose Clean-label Data Poisoning »
W. Ronny Huang · Jonas Geiping · Liam Fowl · Gavin Taylor · Tom Goldstein -
2020 Poster: Robust Deep Reinforcement Learning against Adversarial Perturbations on State Observations »
Huan Zhang · Hongge Chen · Chaowei Xiao · Bo Li · Mingyan Liu · Duane Boning · Cho-Jui Hsieh -
2020 Spotlight: Robust Deep Reinforcement Learning against Adversarial Perturbations on State Observations »
Huan Zhang · Hongge Chen · Chaowei Xiao · Bo Li · Mingyan Liu · Duane Boning · Cho-Jui Hsieh -
2020 Poster: Certifying Strategyproof Auction Networks »
Michael Curry · Ping-yeh Chiang · Tom Goldstein · John Dickerson -
2020 Poster: On Convergence of Nearest Neighbor Classifiers over Feature Transformations »
Luka Rimanic · Cedric Renggli · Bo Li · Ce Zhang -
2020 Poster: Improving Policy-Constrained Kidney Exchange via Pre-Screening »
Duncan McElfresh · Michael Curry · Tuomas Sandholm · John Dickerson -
2020 Poster: Probabilistic Fair Clustering »
Seyed Esmaeili · Brian Brubach · Leonidas Tsepenekas · John Dickerson -
2020 Expo Demonstration: Beyond AutoML: AI Automation & Scaling »
Lisa Amini · Nitin Gupta · Parikshit Ram · Kiran Kate · Bhanukiran Vinzamuri · Nathalie Baracaldo Angel · Martin Korytak · Daniel K Weidele · Dakuo Wang -
2019 : Poster Session »
Nathalie Baracaldo Angel · Seth Neel · Tuyen Le · Dan Philps · Suheng Tao · Sotirios Chatzis · Toyo Suzumura · Wei Wang · WENHANG BAO · Solon Barocas · Manish Raghavan · Samuel Maina · Reginald Bryant · Kush Varshney · Skyler D. Speakman · Navdeep Gill · Nicholas Schmidt · Kevin Compher · Naveen Sundar Govindarajulu · Vivek Sharma · Praneeth Vepakomma · Tristan Swedish · Jayashree Kalpathy-Cramer · Ramesh Raskar · Shihao Zheng · Mykola Pechenizkiy · Marco Schreyer · Li Ling · Chirag Nagpal · Robert Tillman · Manuela Veloso · Hanjie Chen · Xintong Wang · Michael Wellman · Matthew van Adelsberg · Ben Wood · Hans Buehler · Mahmoud Mahfouz · Antonios Alexos · Megan Shearer · Antigoni Polychroniadou · Lucia Larise Stavarache · Dmitry Efimov · Johnston P Hall · Yukun Zhang · Emily Diana · Sumitra Ganesh · Vineeth Ravi · · Swetasudha Panda · Xavier Renard · Matthew Jagielski · Yonadav Shavit · Joshua Williams · Haoran Wei · Shuang (Sophie) Zhai · Xinyi Li · Hongda Shen · Daiki Matsunaga · Jaesik Choi · Alexis Laignelet · Batuhan Guler · Jacobo Roa Vicens · Ajit Desai · Jonathan Aigrain · Robert Samoilescu -
2019 Poster: Making the Cut: A Bandit-based Approach to Tiered Interviewing »
Candice Schumann · Zhi Lang · Jeffrey Foster · John Dickerson -
2019 Poster: Defending Against Neural Fake News »
Rowan Zellers · Ari Holtzman · Hannah Rashkin · Yonatan Bisk · Ali Farhadi · Franziska Roesner · Yejin Choi -
2019 Poster: Adversarial training for free! »
Ali Shafahi · Mahyar Najibi · Mohammad Amin Ghiasi · Zheng Xu · John Dickerson · Christoph Studer · Larry Davis · Gavin Taylor · Tom Goldstein -
2018 Workshop: Wordplay: Reinforcement and Language Learning in Text-based Games »
Adam Trischler · Angeliki Lazaridou · Yonatan Bisk · Wendy Tay · Nate Kushman · Marc-Alexandre Côté · Alessandro Sordoni · Daniel Ricks · Tom Zahavy · Hal Daumé III -
2018 Poster: Poison Frogs! Targeted Clean-Label Poisoning Attacks on Neural Networks »
Ali Shafahi · W. Ronny Huang · Mahyar Najibi · Octavian Suciu · Christoph Studer · Tudor Dumitras · Tom Goldstein -
2018 Poster: On preserving non-discrimination when combining expert advice »
Avrim Blum · Suriya Gunasekar · Thodoris Lykouris · Nati Srebro -
2018 Poster: Visualizing the Loss Landscape of Neural Nets »
Hao Li · Zheng Xu · Gavin Taylor · Christoph Studer · Tom Goldstein -
2018 Demonstration: Game for Detecting Backdoor Attacks on Deep Neural Networks using Activation Clustering »
Casey Dugan · Werner Geyer · Narendra Nath Joshi · Ingrid Lange · Dustin Ramsey Torres · Bryant Chen · Nathalie Baracaldo Angel · Heiko Ludwig -
2017 Poster: Collaborative PAC Learning »
Avrim Blum · Nika Haghtalab · Ariel Procaccia · Mingda Qiao -
2017 Poster: Training Quantized Nets: A Deeper Understanding »
Hao Li · Soham De · Zheng Xu · Christoph Studer · Hanan Samet · Tom Goldstein -
2015 : Spotlight »
Furong Huang · William Gray Roncal · Tom Goldstein -
2015 : Uncertainty in Dynamic Matching »
John P Dickerson -
2015 Poster: Adaptive Primal-Dual Splitting Methods for Statistical Learning and Image Processing »
Tom Goldstein · Min Li · Xiaoming Yuan -
2014 Poster: Learning Optimal Commitment to Overcome Insecurity »
Avrim Blum · Nika Haghtalab · Ariel Procaccia -
2014 Poster: Learning Mixtures of Ranking Models »
Pranjal Awasthi · Avrim Blum · Or Sheffet · Aravindan Vijayaraghavan -
2014 Poster: Active Learning and Best-Response Dynamics »
Maria-Florina F Balcan · Christopher Berlind · Avrim Blum · Emma Cohen · Kaushik Patnaik · Le Song -
2014 Spotlight: Learning Mixtures of Ranking Models »
Pranjal Awasthi · Avrim Blum · Or Sheffet · Aravindan Vijayaraghavan -
2010 Spotlight: Trading off Mistakes and Don't-Know Predictions »
Amin Sayedi · Avrim Blum · Morteza Zadimoghaddam -
2010 Poster: Trading off Mistakes and Don't-Know Predictions »
Amin Sayedi · Morteza Zadimoghaddam · Avrim Blum -
2009 Workshop: Clustering: Science or art? Towards principled approaches »
Margareta Ackerman · Shai Ben-David · Avrim Blum · Isabelle Guyon · Ulrike von Luxburg · Robert Williamson · Reza Zadeh -
2009 Poster: Tracking Dynamic Sources of Malicious Activity at Internet Scale »
Shobha Venkataraman · Avrim Blum · Dawn Song · Subhabrata Sen · Oliver Spatscheck -
2009 Spotlight: Tracking Dynamic Sources of Malicious Activity at Internet Scale »
Shobha Venkataraman · Avrim Blum · Dawn Song · Subhabrata Sen · Oliver Spatscheck -
2008 Workshop: New Challanges in Theoretical Machine Learning: Data Dependent Concept Spaces »
Maria-Florina F Balcan · Shai Ben-David · Avrim Blum · Kristiaan Pelckmans · John Shawe-Taylor