Timezone: »
The common paradigm in reinforcement learning (RL) assumes that an agent frequently interacts with the environment and learns using its own collected experience. This mode of operation is prohibitive for many complex real-world problems, where repeatedly collecting diverse data is expensive (e.g., robotics or educational agents) and/or dangerous (e.g., healthcare). Alternatively, Offline RL focuses on training agents with logged data in an offline fashion with no further environment interaction. Offline RL promises to bring forward a data-driven RL paradigm and carries the potential to scale up end-to-end learning approaches to real-world decision making tasks such as robotics, recommendation systems, dialogue generation, autonomous driving, healthcare systems and safety-critical applications. Recently, successful deep RL algorithms have been adapted to the offline RL setting and demonstrated a potential for success in a number of domains, however, significant algorithmic and practical challenges remain to be addressed. The goal of this workshop is to bring attention to offline RL, both from within and from outside the RL community discuss algorithmic challenges that need to be addressed, discuss potential real-world applications, discuss limitations and challenges, and come up with concrete problem statements and evaluation protocols, inspired from real-world applications, for the research community to work on.
For details on submission please visit: https://offline-rl-neurips.github.io/ (Submission deadline: October 9, 11:59 pm PT)
Speakers:
Emma Brunskill (Stanford)
Finale Doshi-Velez (Harvard)
John Langford (Microsoft Research)
Nan Jiang (UIUC)
Brandyn White (Waymo Research)
Nando de Freitas (DeepMind)
Sat 8:50 a.m. - 9:00 a.m.
|
Introduction
|
Aviral Kumar · George Tucker · Rishabh Agarwal 🔗 |
Sat 9:00 a.m. - 9:30 a.m.
|
Offline RL
(Talk)
SlidesLive Video » |
Nando de Freitas 🔗 |
Sat 9:30 a.m. - 9:40 a.m.
|
Q&A w/ Nando de Freitas
(Q&A)
|
🔗 |
Sat 9:40 a.m. - 9:50 a.m.
|
Contributed Talk 1: Offline Reinforcement Learning by Solving Derived Non-Parametric MDPs
(Talk)
SlidesLive Video » Aayam Shrestha (Oregon State University)*; Stefan Lee (Oregon State University); Prasad Tadepalli (Oregon State University); Alan Fern (Oregon State University) |
Aayam Shrestha 🔗 |
Sat 9:50 a.m. - 10:00 a.m.
|
Contributed Talk 2: Chaining Behaviors from Data with Model-Free Reinforcement Learning
(Talk)
SlidesLive Video » |
Avi Singh 🔗 |
Sat 10:00 a.m. - 10:10 a.m.
|
Contributed Talk 3: Addressing Distribution Shift in Online Reinforcement Learning with Offline Datasets
(Talk)
SlidesLive Video » |
Seunghyun Lee · Younggyo Seo · Kimin Lee 🔗 |
Sat 10:10 a.m. - 10:20 a.m.
|
Contributed Talk 4: Addressing Extrapolation Error in Deep Offline Reinforcement Learning
(Talk)
|
Caglar Gulcehre 🔗 |
Sat 10:20 a.m. - 10:30 a.m.
|
Q/A for Contributed Talks 1
(Q/A)
|
🔗 |
Sat 10:30 a.m. - 11:20 a.m.
|
Poster Session 1 (gather.town) (Poster Session) link » | 🔗 |
Sat 11:20 a.m. - 11:50 a.m.
|
Causal Structure Discovery in RL
(Talk)
|
John Langford 🔗 |
Sat 11:50 a.m. - 12:00 p.m.
|
Q&A w/ John Langford
(Q&A)
|
🔗 |
Sat 12:00 p.m. - 1:00 p.m.
|
Panel
|
Emma Brunskill · Nan Jiang · Nando de Freitas · Finale Doshi-Velez · Sergey Levine · John Langford · Lihong Li · George Tucker · Rishabh Agarwal · Aviral Kumar 🔗 |
Sat 1:10 p.m. - 1:40 p.m.
|
Learning a Multi-Agent Simulator from Offline Demonstrations
(Talk)
SlidesLive Video » |
Brandyn White · Brandyn White 🔗 |
Sat 1:40 p.m. - 1:50 p.m.
|
Q&A w/ Brandyn White
(Q&A)
|
🔗 |
Sat 1:50 p.m. - 2:20 p.m.
|
Towards Reliable Validation and Evaluation for Offline RL
(Talk)
SlidesLive Video » |
Nan Jiang 🔗 |
Sat 2:20 p.m. - 2:30 p.m.
|
Q&A w/ Nan Jiang
(Q&A)
|
🔗 |
Sat 2:30 p.m. - 2:40 p.m.
|
Contributed Talk 5: Latent Action Space for Offline Reinforcement Learning
(Talk)
SlidesLive Video » |
Wenxuan Zhou 🔗 |
Sat 2:40 p.m. - 2:50 p.m.
|
Contributed Talk 6: What are the Statistical Limits for Batch RL with Linear Function Approximation?
(Talk)
SlidesLive Video » |
Ruosong Wang 🔗 |
Sat 2:50 p.m. - 3:00 p.m.
|
Contributed Talk 7: Distilled Thompson Sampling: Practical and Efficient Thompson Sampling via Imitation Learning
(Talk)
SlidesLive Video » |
Samuel Daulton · Hongseok Namkoong 🔗 |
Sat 3:00 p.m. - 3:10 p.m.
|
Contributed Talk 8: Batch-Constrained Distributional Reinforcement Learning for Session-based Recommendation
(Talk)
SlidesLive Video » |
Diksha Garg 🔗 |
Sat 3:10 p.m. - 3:20 p.m.
|
Q/A for Contributed Talks 2
(Q&A)
|
🔗 |
Sat 3:20 p.m. - 4:30 p.m.
|
Poster Session 2 (gather.town) (Poster Session) link » | 🔗 |
Sat 4:30 p.m. - 5:00 p.m.
|
Counterfactuals and Offline RL
(Talk)
|
Emma Brunskill 🔗 |
Sat 5:00 p.m. - 5:10 p.m.
|
Q&A w/ Emma Brunskill
(Q&A)
|
🔗 |
Sat 5:10 p.m. - 5:40 p.m.
|
Batch RL Models Built for Validation
(Talk)
SlidesLive Video » |
Finale Doshi-Velez 🔗 |
Sat 5:40 p.m. - 5:50 p.m.
|
Q&A w/ Finale Doshi-Velez
(Q&A)
|
🔗 |
Sat 5:50 p.m. - 6:00 p.m.
|
Closing Remarks
|
🔗 |
Author Information
Aviral Kumar (UC Berkeley)
Rishabh Agarwal (Google Research, Brain Team)
My research work mainly revolves around deep reinforcement learning (RL), often with the goal of making RL methods suitable for real-world problems, and includes an outstanding paper award at NeurIPS.
George Tucker (Google Brain)
Lihong Li (Google Brain)
Doina Precup (McGill University / Mila / DeepMind Montreal)
Aviral Kumar (UC Berkeley)
More from the Same Authors
-
2021 Spotlight: Neural Additive Models: Interpretable Machine Learning with Neural Nets »
Rishabh Agarwal · Levi Melnick · Nicholas Frosst · Xuezhou Zhang · Ben Lengerich · Rich Caruana · Geoffrey Hinton -
2021 : Data Sharing without Rewards in Multi-Task Offline Reinforcement Learning »
Tianhe Yu · Aviral Kumar · Yevgen Chebotar · Chelsea Finn · Sergey Levine · Karol Hausman -
2021 : Should I Run Offline Reinforcement Learning or Behavioral Cloning? »
Aviral Kumar · Joey Hong · Anikait Singh · Sergey Levine -
2021 : DR3: Value-Based Deep Reinforcement Learning Requires Explicit Regularization »
Aviral Kumar · Rishabh Agarwal · Tengyu Ma · Aaron Courville · George Tucker · Sergey Levine -
2021 : Offline Policy Selection under Uncertainty »
Mengjiao (Sherry) Yang · Bo Dai · Ofir Nachum · George Tucker · Dale Schuurmans -
2021 : Behavior Predictive Representations for Generalization in Reinforcement Learning »
Siddhant Agarwal · Aaron Courville · Rishabh Agarwal -
2021 : Single-Shot Pruning for Offline Reinforcement Learning »
Samin Yeasar Arnob · · Sergey Plis · Doina Precup -
2021 : Importance of Empirical Sample Complexity Analysis for Offline Reinforcement Learning »
Samin Yeasar Arnob · Riashat Islam · Doina Precup -
2022 : A Novel Stochastic Gradient Descent Algorithm for LearningPrincipal Subspaces »
Charline Le Lan · Joshua Greaves · Jesse Farebrother · Mark Rowland · Fabian Pedregosa · Rishabh Agarwal · Marc Bellemare -
2022 : The Paradox of Choice: On the Role of Attention in Hierarchical Reinforcement Learning »
Andrei Nica · Khimya Khetarpal · Doina Precup -
2022 : Proto-Value Networks: Scaling Representation Learning with Auxiliary Tasks »
Jesse Farebrother · Joshua Greaves · Rishabh Agarwal · Charline Le Lan · Ross Goroshin · Pablo Samuel Castro · Marc Bellemare -
2022 : Offline Q-learning on Diverse Multi-Task Data Both Scales And Generalizes »
Aviral Kumar · Rishabh Agarwal · XINYANG GENG · George Tucker · Sergey Levine -
2022 : Pre-Training for Robots: Leveraging Diverse Multitask Data via Offline Reinforcement Learning »
Aviral Kumar · Anikait Singh · Frederik Ebert · Yanlai Yang · Chelsea Finn · Sergey Levine -
2022 : Offline Reinforcement Learning from Heteroskedastic Data Via Support Constraints »
Anikait Singh · Aviral Kumar · Quan Vuong · Yevgen Chebotar · Sergey Levine -
2022 : Multi-Environment Pretraining Enables Transfer to Action Limited Datasets »
David Venuto · Mengjiao (Sherry) Yang · Pieter Abbeel · Doina Precup · Igor Mordatch · Ofir Nachum -
2022 : Imitation Is Not Enough: Robustifying Imitation with Reinforcement Learning for Challenging Driving Scenarios »
Yiren Lu · Yiren Lu · Yiren Lu · Justin Fu · George Tucker · Xinlei Pan · Eli Bronstein · Rebecca Roelofs · Benjamin Sapp · Brandyn White · Aleksandra Faust · Shimon Whiteson · Dragomir Anguelov · Sergey Levine -
2022 : Proto-Value Networks: Scaling Representation Learning with Auxiliary Tasks »
Jesse Farebrother · Joshua Greaves · Rishabh Agarwal · Charline Le Lan · Ross Goroshin · Pablo Samuel Castro · Marc Bellemare -
2022 : Confidence-Conditioned Value Functions for Offline Reinforcement Learning »
Joey Hong · Aviral Kumar · Sergey Levine -
2022 : Efficient Deep Reinforcement Learning Requires Regulating Statistical Overfitting »
Qiyang Li · Aviral Kumar · Ilya Kostrikov · Sergey Levine -
2022 : Revisiting Bellman Errors for Offline Model Selection »
Joshua Zitovsky · Rishabh Agarwal · Daniel de Marchi · Michael Kosorok -
2022 : Bayesian Q-learning With Imperfect Expert Demonstrations »
Fengdi Che · Xiru Zhu · Doina Precup · David Meger · Gregory Dudek -
2022 : Complete the Missing Half: Augmenting Aggregation Filtering with Diversification for Graph Convolutional Networks »
Sitao Luan · Mingde Zhao · Chenqing Hua · Xiao-Wen Chang · Doina Precup -
2022 : Revisiting Bellman Errors for Offline Model Selection »
Joshua Zitovsky · Daniel de Marchi · Rishabh Agarwal · Michael Kosorok -
2022 : Confidence-Conditioned Value Functions for Offline Reinforcement Learning »
Joey Hong · Aviral Kumar · Sergey Levine -
2022 : Proto-Value Networks: Scaling Representation Learning with Auxiliary Tasks »
Jesse Farebrother · Joshua Greaves · Rishabh Agarwal · Charline Le Lan · Ross Goroshin · Pablo Samuel Castro · Marc Bellemare -
2022 : Bayesian Q-learning With Imperfect Expert Demonstrations »
Fengdi Che · Xiru Zhu · Doina Precup · David Meger · Gregory Dudek -
2022 : Efficient Deep Reinforcement Learning Requires Regulating Statistical Overfitting »
Qiyang Li · Aviral Kumar · Ilya Kostrikov · Sergey Levine -
2022 : Pre-Training for Robots: Leveraging Diverse Multitask Data via Offline Reinforcement Learning »
Anikait Singh · Aviral Kumar · Frederik Ebert · Yanlai Yang · Chelsea Finn · Sergey Levine -
2022 : Offline Reinforcement Learning from Heteroskedastic Data Via Support Constraints »
Anikait Singh · Aviral Kumar · Quan Vuong · Yevgen Chebotar · Sergey Levine -
2022 : Investigating Multi-task Pretraining and Generalization in Reinforcement Learning »
Adrien Ali Taiga · Rishabh Agarwal · Jesse Farebrother · Aaron Courville · Marc Bellemare -
2022 : Ilya Kostrikov, Aviral Kumar »
Ilya Kostrikov · Aviral Kumar -
2022 : Offline Q-learning on Diverse Multi-Task Data Both Scales And Generalizes »
Aviral Kumar · Rishabh Agarwal · XINYANG GENG · George Tucker · Sergey Levine -
2022 Spotlight: Lightning Talks 3B-3 »
Sitao Luan · Zhiyuan You · Ruofan Liu · Linhao Qu · Yuwei Fu · Jiaxi Wang · Chunyu Wei · Jian Liang · xiaoyuan luo · Di Wu · Yun Lin · Lei Cui · Ji Wu · Chenqing Hua · Yujun Shen · Qincheng Lu · XIANGLIN YANG · Benoit Boulet · Manning Wang · Di Liu · Lei Huang · Fei Wang · Kai Yang · Jiaqi Zhu · Jin Song Dong · Zhijian Song · Xin Lu · Mingde Zhao · Shuyuan Zhang · Yu Zheng · Xiao-Wen Chang · Xinyi Le · Doina Precup -
2022 Spotlight: Revisiting Heterophily For Graph Neural Networks »
Sitao Luan · Chenqing Hua · Qincheng Lu · Jiaqi Zhu · Mingde Zhao · Shuyuan Zhang · Xiao-Wen Chang · Doina Precup -
2022 : Simulating Human Gaze with Neural Visual Attention »
Leo Schwinn · Doina Precup · Bjoern Eskofier · Dario Zanca -
2022 : Democratizing RL Research by Reusing Prior Computation »
Rishabh Agarwal -
2022 : Simulating Human Gaze with Neural Visual Attention »
Leo Schwinn · Doina Precup · Bjoern Eskofier · Dario Zanca -
2022 Workshop: 3rd Offline Reinforcement Learning Workshop: Offline RL as a "Launchpad" »
Aviral Kumar · Rishabh Agarwal · Aravind Rajeswaran · Wenxuan Zhou · George Tucker · Doina Precup · Aviral Kumar -
2022 Poster: Oracle Inequalities for Model Selection in Offline Reinforcement Learning »
Jonathan N Lee · George Tucker · Ofir Nachum · Bo Dai · Emma Brunskill -
2022 Poster: Reincarnating Reinforcement Learning: Reusing Prior Computation to Accelerate Progress »
Rishabh Agarwal · Max Schwarzer · Pablo Samuel Castro · Aaron Courville · Marc Bellemare -
2022 Poster: Revisiting Heterophily For Graph Neural Networks »
Sitao Luan · Chenqing Hua · Qincheng Lu · Jiaqi Zhu · Mingde Zhao · Shuyuan Zhang · Xiao-Wen Chang · Doina Precup -
2022 Poster: DASCO: Dual-Generator Adversarial Support Constrained Offline Reinforcement Learning »
Quan Vuong · Aviral Kumar · Sergey Levine · Yevgen Chebotar -
2022 Poster: Data-Driven Offline Decision-Making via Invariant Representation Learning »
Han Qi · Yi Su · Aviral Kumar · Sergey Levine -
2022 Poster: Continuous MDP Homomorphisms and Homomorphic Policy Gradient »
Sahand Rezaei-Shoshtari · Rosie Zhao · Prakash Panangaden · David Meger · Doina Precup -
2021 : Speaker Intro »
Aviral Kumar · George Tucker -
2021 : Speaker Intro »
Aviral Kumar · George Tucker -
2021 : Retrospective Panel »
Sergey Levine · Nando de Freitas · Emma Brunskill · Finale Doshi-Velez · Nan Jiang · Rishabh Agarwal -
2021 : Invited Speaker Panel »
Sham Kakade · Minmin Chen · Philip Thomas · Angela Schoellig · Barbara Engelhardt · Doina Precup · George Tucker -
2021 : Speaker Intro »
Rishabh Agarwal · Aviral Kumar -
2021 : Speaker Intro »
Rishabh Agarwal · Aviral Kumar -
2021 Workshop: Offline Reinforcement Learning »
Rishabh Agarwal · Aviral Kumar · George Tucker · Justin Fu · Nan Jiang · Doina Precup · Aviral Kumar -
2021 : Opening Remarks »
Rishabh Agarwal · Aviral Kumar -
2021 : Behavior Predictive Representations for Generalization in Reinforcement Learning »
Siddhant Agarwal · Aaron Courville · Rishabh Agarwal -
2021 : Data-Driven Offline Optimization for Architecting Hardware Accelerators »
Aviral Kumar · Amir Yazdanbakhsh · Milad Hashemi · Kevin Swersky · Sergey Levine -
2021 : DR3: Value-Based Deep Reinforcement Learning Requires Explicit Regularization Q&A »
Aviral Kumar · Rishabh Agarwal · Tengyu Ma · Aaron Courville · George Tucker · Sergey Levine -
2021 : DR3: Value-Based Deep Reinforcement Learning Requires Explicit Regularization »
Aviral Kumar · Rishabh Agarwal · Tengyu Ma · Aaron Courville · George Tucker · Sergey Levine -
2021 Poster: COMBO: Conservative Offline Model-Based Policy Optimization »
Tianhe Yu · Aviral Kumar · Rafael Rafailov · Aravind Rajeswaran · Sergey Levine · Chelsea Finn -
2021 Poster: Coupled Gradient Estimators for Discrete Latent Variables »
Zhe Dong · Andriy Mnih · George Tucker -
2021 Oral: Deep Reinforcement Learning at the Edge of the Statistical Precipice »
Rishabh Agarwal · Max Schwarzer · Pablo Samuel Castro · Aaron Courville · Marc Bellemare -
2021 Poster: Neural Additive Models: Interpretable Machine Learning with Neural Nets »
Rishabh Agarwal · Levi Melnick · Nicholas Frosst · Xuezhou Zhang · Ben Lengerich · Rich Caruana · Geoffrey Hinton -
2021 Poster: Conservative Data Sharing for Multi-Task Offline Reinforcement Learning »
Tianhe Yu · Aviral Kumar · Yevgen Chebotar · Karol Hausman · Sergey Levine · Chelsea Finn -
2021 Poster: Deep Reinforcement Learning at the Edge of the Statistical Precipice »
Rishabh Agarwal · Max Schwarzer · Pablo Samuel Castro · Aaron Courville · Marc Bellemare -
2021 Poster: Why Generalization in RL is Difficult: Epistemic POMDPs and Implicit Partial Observability »
Dibya Ghosh · Jad Rahme · Aviral Kumar · Amy Zhang · Ryan Adams · Sergey Levine -
2020 : Design-Bench: Benchmarks for Data-Driven Offline Model-Based Optimization »
Brandon Trabucco · Aviral Kumar · XINYANG GENG · Sergey Levine -
2020 : Conservative Objective Models: A Simple Approach to Effective Model-Based Optimization »
Brandon Trabucco · Aviral Kumar · XINYANG GENG · Sergey Levine -
2020 : Closing remarks »
Raymond Chua · Feryal Behbahani · Julie J Lee · Rui Ponte Costa · Doina Precup · Blake Richards · Ida Momennejad -
2020 : Invited Talk #7 QnA - Yael Niv »
Yael Niv · Doina Precup · Raymond Chua · Feryal Behbahani -
2020 : Speaker Introduction: Yael Niv »
Doina Precup · Raymond Chua · Feryal Behbahani -
2020 : Contributed Talk #3: Contrastive Behavioral Similarity Embeddings for Generalization in Reinforcement Learning »
Rishabh Agarwal · Marlos C. Machado · Pablo Samuel Castro · Marc Bellemare -
2020 : Panel »
Emma Brunskill · Nan Jiang · Nando de Freitas · Finale Doshi-Velez · Sergey Levine · John Langford · Lihong Li · George Tucker · Rishabh Agarwal · Aviral Kumar -
2020 : Introduction »
Aviral Kumar · George Tucker · Rishabh Agarwal -
2020 : Panel Discussions »
Grace Lindsay · George Konidaris · Shakir Mohamed · Kimberly Stachenfeld · Peter Dayan · Yael Niv · Doina Precup · Catherine Hartley · Ishita Dasgupta -
2020 Workshop: Biological and Artificial Reinforcement Learning »
Raymond Chua · Feryal Behbahani · Julie J Lee · Sara Zannone · Rui Ponte Costa · Blake Richards · Ida Momennejad · Doina Precup -
2020 : Organizers Opening Remarks »
Raymond Chua · Feryal Behbahani · Julie J Lee · Ida Momennejad · Rui Ponte Costa · Blake Richards · Doina Precup -
2020 : Keynote: Doina Precup »
Doina Precup -
2020 Poster: Model Inversion Networks for Model-Based Optimization »
Aviral Kumar · Sergey Levine -
2020 Poster: Reward Propagation Using Graph Convolutional Networks »
Martin Klissarov · Doina Precup -
2020 Spotlight: Reward Propagation Using Graph Convolutional Networks »
Martin Klissarov · Doina Precup -
2020 Poster: RL Unplugged: A Suite of Benchmarks for Offline Reinforcement Learning »
Caglar Gulcehre · Ziyu Wang · Alexander Novikov · Thomas Paine · Sergio Gómez · Konrad Zolna · Rishabh Agarwal · Josh Merel · Daniel Mankowitz · Cosmin Paduraru · Gabriel Dulac-Arnold · Jerry Li · Mohammad Norouzi · Matthew Hoffman · Nicolas Heess · Nando de Freitas -
2020 Poster: DisARM: An Antithetic Gradient Estimator for Binary Latent Variables »
Zhe Dong · Andriy Mnih · George Tucker -
2020 Spotlight: DisARM: An Antithetic Gradient Estimator for Binary Latent Variables »
Zhe Dong · Andriy Mnih · George Tucker -
2020 Poster: Conservative Q-Learning for Offline Reinforcement Learning »
Aviral Kumar · Aurick Zhou · George Tucker · Sergey Levine -
2020 Tutorial: (Track3) Offline Reinforcement Learning: From Algorithm Design to Practical Applications Q&A »
Sergey Levine · Aviral Kumar -
2020 Poster: One Solution is Not All You Need: Few-Shot Extrapolation via Structured MaxEnt RL »
Saurabh Kumar · Aviral Kumar · Sergey Levine · Chelsea Finn -
2020 Poster: An Equivalence between Loss Functions and Non-Uniform Sampling in Experience Replay »
Scott Fujimoto · David Meger · Doina Precup -
2020 Poster: Forethought and Hindsight in Credit Assignment »
Veronica Chelu · Doina Precup · Hado van Hasselt -
2020 Poster: DisCor: Corrective Feedback in Reinforcement Learning via Distribution Correction »
Aviral Kumar · Abhishek Gupta · Sergey Levine -
2020 Spotlight: DisCor: Corrective Feedback in Reinforcement Learning via Distribution Correction »
Aviral Kumar · Abhishek Gupta · Sergey Levine -
2020 Tutorial: (Track3) Offline Reinforcement Learning: From Algorithm Design to Practical Applications »
Sergey Levine · Aviral Kumar -
2019 : Panel Session: A new hope for neuroscience »
Yoshua Bengio · Blake Richards · Timothy Lillicrap · Ila Fiete · David Sussillo · Doina Precup · Konrad Kording · Surya Ganguli -
2019 : Poster Presentations »
Rahul Mehta · Andrew Lampinen · Binghong Chen · Sergio Pascual-Diaz · Jordi Grau-Moya · Aldo Faisal · Jonathan Tompson · Yiren Lu · Khimya Khetarpal · Martin Klissarov · Pierre-Luc Bacon · Doina Precup · Thanard Kurutach · Aviv Tamar · Pieter Abbeel · Jinke He · Maximilian Igl · Shimon Whiteson · Wendelin Boehmer · Raphaël Marinier · Olivier Pietquin · Karol Hausman · Sergey Levine · Chelsea Finn · Tianhe Yu · Lisa Lee · Benjamin Eysenbach · Emilio Parisotto · Eric Xing · Ruslan Salakhutdinov · Hongyu Ren · Anima Anandkumar · Deepak Pathak · Christopher Lu · Trevor Darrell · Alexei Efros · Phillip Isola · Feng Liu · Bo Han · Gang Niu · Masashi Sugiyama · Saurabh Kumar · Janith Petangoda · Johan Ferret · James McClelland · Kara Liu · Animesh Garg · Robert Lange -
2019 : Poster Session »
Matthia Sabatelli · Adam Stooke · Amir Abdi · Paulo Rauber · Leonard Adolphs · Ian Osband · Hardik Meisheri · Karol Kurach · Johannes Ackermann · Matt Benatan · GUO ZHANG · Chen Tessler · Dinghan Shen · Mikayel Samvelyan · Riashat Islam · Murtaza Dalal · Luke Harries · Andrey Kurenkov · Konrad Żołna · Sudeep Dasari · Kristian Hartikainen · Ofir Nachum · Kimin Lee · Markus Holzleitner · Vu Nguyen · Francis Song · Christopher Grimm · Felipe Leno da Silva · Yuping Luo · Yifan Wu · Alex Lee · Thomas Paine · Wei-Yang Qu · Daniel Graves · Yannis Flet-Berliac · Yunhao Tang · Suraj Nair · Matthew Hausknecht · Akhil Bagaria · Simon Schmitt · Bowen Baker · Paavo Parmas · Benjamin Eysenbach · Lisa Lee · Siyu Lin · Daniel Seita · Abhishek Gupta · Riley Simmons-Edler · Yijie Guo · Kevin Corder · Vikash Kumar · Scott Fujimoto · Adam Lerer · Ignasi Clavera Gilaberte · Nicholas Rhinehart · Ashvin Nair · Ge Yang · Lingxiao Wang · Sungryull Sohn · J. Fernando Hernandez-Garcia · Xian Yeow Lee · Rupesh Srivastava · Khimya Khetarpal · Chenjun Xiao · Luckeciano Carvalho Melo · Rishabh Agarwal · Tianhe Yu · Glen Berseth · Devendra Singh Chaplot · Jie Tang · Anirudh Srinivasan · Tharun Kumar Reddy Medini · Aaron Havens · Misha Laskin · Asier Mujika · Rohan Saphal · Joseph Marino · Alex Ray · Joshua Achiam · Ajay Mandlekar · Zhuang Liu · Danijar Hafner · Zhiwen Tang · Ted Xiao · Michael Walton · Jeff Druce · Ferran Alet · Zhang-Wei Hong · Stephanie Chan · Anusha Nagabandi · Hao Liu · Hao Sun · Ge Liu · Dinesh Jayaraman · John Co-Reyes · Sophia Sanborn -
2019 : Contributed Talks »
Rishabh Agarwal · Adam Gleave · Kimin Lee -
2019 : Poster Spotlight 2 »
Aaron Sidford · Mengdi Wang · Lin Yang · Yinyu Ye · Zuyue Fu · Zhuoran Yang · Yongxin Chen · Zhaoran Wang · Ofir Nachum · Bo Dai · Ilya Kostrikov · Dale Schuurmans · Ziyang Tang · Yihao Feng · Lihong Li · Denny Zhou · Qiang Liu · Rodrigo Toro Icarte · Ethan Waldie · Toryn Klassen · Rick Valenzano · Margarita Castro · Simon Du · Sham Kakade · Ruosong Wang · Minshuo Chen · Tianyi Liu · Xingguo Li · Zhaoran Wang · Tuo Zhao · Philip Amortila · Doina Precup · Prakash Panangaden · Marc Bellemare -
2019 : Panel Discussion »
Richard Sutton · Doina Precup -
2019 : Poster and Coffee Break 1 »
Aaron Sidford · Aditya Mahajan · Alejandro Ribeiro · Alex Lewandowski · Ali H Sayed · Ambuj Tewari · Angelika Steger · Anima Anandkumar · Asier Mujika · Hilbert J Kappen · Bolei Zhou · Byron Boots · Chelsea Finn · Chen-Yu Wei · Chi Jin · Ching-An Cheng · Christina Yu · Clement Gehring · Craig Boutilier · Dahua Lin · Daniel McNamee · Daniel Russo · David Brandfonbrener · Denny Zhou · Devesh Jha · Diego Romeres · Doina Precup · Dominik Thalmeier · Eduard Gorbunov · Elad Hazan · Elena Smirnova · Elvis Dohmatob · Emma Brunskill · Enrique Munoz de Cote · Ethan Waldie · Florian Meier · Florian Schaefer · Ge Liu · Gergely Neu · Haim Kaplan · Hao Sun · Hengshuai Yao · Jalaj Bhandari · James A Preiss · Jayakumar Subramanian · Jiajin Li · Jieping Ye · Jimmy Smith · Joan Bas Serrano · Joan Bruna · John Langford · Jonathan Lee · Jose A. Arjona-Medina · Kaiqing Zhang · Karan Singh · Yuping Luo · Zafarali Ahmed · Zaiwei Chen · Zhaoran Wang · Zhizhong Li · Zhuoran Yang · Ziping Xu · Ziyang Tang · Yi Mao · David Brandfonbrener · Shirli Di-Castro · Riashat Islam · Zuyue Fu · Abhishek Naik · Saurabh Kumar · Benjamin Petit · Angeliki Kamoutsi · Simone Totaro · Arvind Raghunathan · Rui Wu · Donghwan Lee · Dongsheng Ding · Alec Koppel · Hao Sun · Christian Tjandraatmadja · Mahdi Karami · Jincheng Mei · Chenjun Xiao · Junfeng Wen · Zichen Zhang · Ross Goroshin · Mohammad Pezeshki · Jiaqi Zhai · Philip Amortila · Shuo Huang · Mariya Vasileva · El houcine Bergou · Adel Ahmadyan · Haoran Sun · Sheng Zhang · Lukas Gruber · Yuanhao Wang · Tetiana Parshakova -
2019 : Invited Talk: Hierarchical Reinforcement Learning: Computational Advances and Neuroscience Connections »
Doina Precup -
2019 : Panel Discussion led by Grace Lindsay »
Grace Lindsay · Blake Richards · Doina Precup · Jacqueline Gottlieb · Jeff Clune · Jane Wang · Richard Sutton · Angela Yu · Ida Momennejad -
2019 : Poster Session »
Ahana Ghosh · Javad Shafiee · Akhilan Boopathy · Alex Tamkin · Theodoros Vasiloudis · Vedant Nanda · Ali Baheri · Paul Fieguth · Andrew Bennett · Guanya Shi · Hao Liu · Arushi Jain · Jacob Tyo · Benjie Wang · Boxiao Chen · Carroll Wainwright · Chandramouli Shama Sastry · Chao Tang · Daniel S. Brown · David Inouye · David Venuto · Dhruv Ramani · Dimitrios Diochnos · Divyam Madaan · Dmitrii Krashenikov · Joel Oren · Doyup Lee · Eleanor Quint · elmira amirloo · Matteo Pirotta · Gavin Hartnett · Geoffroy Dubourg-Felonneau · Gokul Swamy · Pin-Yu Chen · Ilija Bogunovic · Jason Carter · Javier Garcia-Barcos · Jeet Mohapatra · Jesse Zhang · Jian Qian · John Martin · Oliver Richter · Federico Zaiter · Tsui-Wei Weng · Karthik Abinav Sankararaman · Kyriakos Polymenakos · Lan Hoang · mahdieh abbasi · Marco Gallieri · Mathieu Seurin · Matteo Papini · Matteo Turchetta · Matthew Sotoudeh · Mehrdad Hosseinzadeh · Nathan Fulton · Masatoshi Uehara · Niranjani Prasad · Oana-Maria Camburu · Patrik Kolaric · Philipp Renz · Prateek Jaiswal · Reazul Hasan Russel · Riashat Islam · Rishabh Agarwal · Alexander Aldrick · Sachin Vernekar · Sahin Lale · Sai Kiran Narayanaswami · Samuel Daulton · Sanjam Garg · Sebastian East · Shun Zhang · Soheil Dsidbari · Justin Goodwin · Victoria Krakovna · Wenhao Luo · Wesley Chung · Yuanyuan Shi · Yuh-Shyang Wang · Hongwei Jin · Ziping Xu -
2019 : Opening Remarks »
Raymond Chua · Feryal Behbahani · Sara Zannone · Rui Ponte Costa · Claudia Clopath · Doina Precup · Blake Richards -
2019 Workshop: Biological and Artificial Reinforcement Learning »
Raymond Chua · Sara Zannone · Feryal Behbahani · Rui Ponte Costa · Claudia Clopath · Blake Richards · Doina Precup -
2019 Poster: Stabilizing Off-Policy Q-Learning via Bootstrapping Error Reduction »
Aviral Kumar · Justin Fu · George Tucker · Sergey Levine -
2019 Poster: Graph Normalizing Flows »
Jenny Liu · Aviral Kumar · Jimmy Ba · Jamie Kiros · Kevin Swersky -
2019 Poster: Energy-Inspired Models: Learning with Sampler-Induced Distributions »
Dieterich Lawson · George Tucker · Bo Dai · Rajesh Ranganath -
2019 Poster: Don't Blame the ELBO! A Linear VAE Perspective on Posterior Collapse »
James Lucas · George Tucker · Roger Grosse · Mohammad Norouzi -
2019 Poster: Break the Ceiling: Stronger Multi-scale Deep Graph Convolutional Networks »
Sitao Luan · Mingde Zhao · Xiao-Wen Chang · Doina Precup -
2018 : Spotlights »
Guangneng Hu · Ke Li · Aviral Kumar · Phi Vu Tran · Samuel G. Fadel · Rita Kuznetsova · Bong-Nam Kang · Behrouz Haji Soleimani · Jinwon An · Nathan de Lara · Anjishnu Kumar · Tillman Weyde · Melanie Weber · Kristen Altenburger · Saeed Amizadeh · Xiaoran Xu · Yatin Nandwani · Yang Guo · Maria Pacheco · William Fedus · Guillaume Jaume · Yuka Yoneda · Yunpu Ma · Yunsheng Bai · Berk Kapicioglu · Maximilian Nickel · Fragkiskos Malliaros · Beier Zhu · Aleksandar Bojchevski · Joshua Joseph · Gemma Roig · Esma Balkir · Xander Steenbrugge -
2018 Poster: Sample-Efficient Reinforcement Learning with Stochastic Ensemble Value Expansion »
Jacob Buckman · Danijar Hafner · George Tucker · Eugene Brevdo · Honglak Lee -
2018 Oral: Sample-Efficient Reinforcement Learning with Stochastic Ensemble Value Expansion »
Jacob Buckman · Danijar Hafner · George Tucker · Eugene Brevdo · Honglak Lee -
2018 Poster: Temporal Regularization for Markov Decision Process »
Pierre Thodoroff · Audrey Durand · Joelle Pineau · Doina Precup -
2018 Poster: Learning Safe Policies with Expert Guidance »
Jessie Huang · Fa Wu · Doina Precup · Yang Cai -
2017 : Panel Discussion »
Matt Botvinick · Emma Brunskill · Marcos Campos · Jan Peters · Doina Precup · David Silver · Josh Tenenbaum · Roy Fox -
2017 : Progress on Deep Reinforcement Learning with Temporal Abstraction (Doina Precup) »
Doina Precup -
2017 : Doina Precup »
Doina Precup -
2017 Workshop: Hierarchical Reinforcement Learning »
Andrew G Barto · Doina Precup · Shie Mannor · Tom Schaul · Roy Fox · Carlos Florensa -
2017 Poster: REBAR: Low-variance, unbiased gradient estimates for discrete latent variable models »
George Tucker · Andriy Mnih · Chris J Maddison · John Lawson · Jascha Sohl-Dickstein -
2017 Oral: REBAR: Low-variance, unbiased gradient estimates for discrete latent variable models »
George Tucker · Andriy Mnih · Chris J Maddison · John Lawson · Jascha Sohl-Dickstein -
2017 Poster: Filtering Variational Objectives »
Chris Maddison · John Lawson · George Tucker · Nicolas Heess · Mohammad Norouzi · Andriy Mnih · Arnaud Doucet · Yee Teh -
2016 Workshop: The Future of Interactive Machine Learning »
Kory Mathewson @korymath · Kaushik Subramanian · Mark Ho · Robert Loftin · Joseph L Austerweil · Anna Harutyunyan · Doina Precup · Layla El Asri · Matthew Gombolay · Jerry Zhu · Sonia Chernova · Charles Isbell · Patrick M Pilarski · Weng-Keen Wong · Manuela Veloso · Julie A Shah · Matthew Taylor · Brenna Argall · Michael Littman -
2015 Poster: Data Generation as Sequential Decision Making »
Philip Bachman · Doina Precup -
2015 Spotlight: Data Generation as Sequential Decision Making »
Philip Bachman · Doina Precup -
2015 Poster: Basis refinement strategies for linear value function approximation in MDPs »
Gheorghe Comanici · Doina Precup · Prakash Panangaden -
2014 Workshop: From Bad Models to Good Policies (Sequential Decision Making under Uncertainty) »
Odalric-Ambrym Maillard · Timothy A Mann · Shie Mannor · Jeremie Mary · Laurent Orseau · Thomas Dietterich · Ronald Ortner · Peter Grünwald · Joelle Pineau · Raphael Fonteneau · Georgios Theocharous · Esteban D Arcaute · Christos Dimitrakakis · Nan Jiang · Doina Precup · Pierre-Luc Bacon · Marek Petrik · Aviv Tamar -
2014 Poster: Optimizing Energy Production Using Policy Search and Predictive State Representations »
Yuri Grinberg · Doina Precup · Michel Gendreau -
2014 Poster: Learning with Pseudo-Ensembles »
Philip Bachman · Ouais Alsharif · Doina Precup -
2014 Spotlight: Optimizing Energy Production Using Policy Search and Predictive State Representations »
Yuri Grinberg · Doina Precup · Michel Gendreau -
2013 Poster: Learning from Limited Demonstrations »
Beomjoon Kim · Amir-massoud Farahmand · Joelle Pineau · Doina Precup -
2013 Poster: Bellman Error Based Feature Generation using Random Projections on Sparse Spaces »
Mahdi Milani Fard · Yuri Grinberg · Amir-massoud Farahmand · Joelle Pineau · Doina Precup -
2013 Spotlight: Learning from Limited Demonstrations »
Beomjoon Kim · Amir-massoud Farahmand · Joelle Pineau · Doina Precup -
2012 Poster: Value Pursuit Iteration »
Amir-massoud Farahmand · Doina Precup -
2012 Poster: On-line Reinforcement Learning Using Incremental Kernel-Based Stochastic Factorization »
Andre S Barreto · Doina Precup · Joelle Pineau -
2011 Poster: Reinforcement Learning using Kernel-Based Stochastic Factorization »
Andre S Barreto · Doina Precup · Joelle Pineau -
2009 Poster: Convergent Temporal-Difference Learning with Arbitrary Smooth Function Approximation »
Hamid R Maei · Csaba Szepesvari · Shalabh Batnaghar · Doina Precup · David Silver · Richard Sutton -
2009 Spotlight: Convergent Temporal-Difference Learning with Arbitrary Smooth Function Approximation »
Hamid R Maei · Csaba Szepesvari · Shalabh Batnaghar · Doina Precup · David Silver · Richard Sutton -
2008 Poster: Bounding Performance Loss in Approximate MDP Homomorphisms »
Doina Precup · Jonathan Taylor Taylor · Prakash Panangaden