Timezone: »

Differentiable computer vision, graphics, and physics in machine learning
Krishna Murthy Jatavallabhula · Kelsey Allen · Victoria Dean · Johanna Hansen · Shuran Song · Florian Shkurti · Liam Paull · Derek Nowrouzezahrai · Josh Tenenbaum

Fri Dec 11 06:45 AM -- 02:30 PM (PST) @
Event URL: https://montrealrobotics.ca/diffcvgp/ »

“Differentiable programs” are parameterized programs that allow themselves to be rewritten by gradient-based optimization. They are ubiquitous in modern-day machine learning. Recently, explicitly encoding our knowledge of the rules of the world in the form of differentiable programs has become more popular. In particular, differentiable realizations of well-studied processes such as physics, rendering, projective geometry, optimization to name a few, have enabled the design of several novel learning techniques. For example, many approaches have been proposed for unsupervised learning of depth estimation from unlabeled videos. Differentiable 3D reconstruction pipelines have demonstrated the potential for task-driven representation learning. A number of differentiable rendering approaches have been shown to enable single-view 3D reconstruction and other inverse graphics tasks (without requiring any form of 3D supervision). Differentiable physics simulators are being built to perform physical parameter estimation from video or for model-predictive control. While these advances have largely occurred in isolation, recent efforts have attempted to bridge the gap between the aforementioned areas. Narrowing the gaps between these otherwise isolated disciplines holds tremendous potential to yield new research directions and solve long-standing problems, particularly in understanding and reasoning about the 3D world.

Hence, we propose the “first workshop on differentiable computer vision, graphics, and physics in machine learning” with the aim of:
1. Narrowing the gap and fostering synergies between the computer vision, graphics, physics, and machine learning communities
2. Debating the promise and perils of differentiable methods, and identifying challenges that need to be overcome
3. Raising awareness about these techniques to the larger ML community
4. Discussing the broader impact of such techniques, and any ethical implications thereof.

Author Information

Krishna Murthy Jatavallabhula (Mila, Universite de Montreal)
Kelsey Allen (MIT)
Victoria Dean (CMU)
Johanna Hansen (McGill University)
Shuran Song (Columbia University)
Florian Shkurti (University of Toronto)
Liam Paull (Université de Montréal)
Derek Nowrouzezahrai (McGill University)
Josh Tenenbaum (MIT)

Josh Tenenbaum is an Associate Professor of Computational Cognitive Science at MIT in the Department of Brain and Cognitive Sciences and the Computer Science and Artificial Intelligence Laboratory (CSAIL). He received his PhD from MIT in 1999, and was an Assistant Professor at Stanford University from 1999 to 2002. He studies learning and inference in humans and machines, with the twin goals of understanding human intelligence in computational terms and bringing computers closer to human capacities. He focuses on problems of inductive generalization from limited data -- learning concepts and word meanings, inferring causal relations or goals -- and learning abstract knowledge that supports these inductive leaps in the form of probabilistic generative models or 'intuitive theories'. He has also developed several novel machine learning methods inspired by human learning and perception, most notably Isomap, an approach to unsupervised learning of nonlinear manifolds in high-dimensional data. He has been Associate Editor for the journal Cognitive Science, has been active on program committees for the CogSci and NIPS conferences, and has co-organized a number of workshops, tutorials and summer schools in human and machine learning. Several of his papers have received outstanding paper awards or best student paper awards at the IEEE Computer Vision and Pattern Recognition (CVPR), NIPS, and Cognitive Science conferences. He is the recipient of the New Investigator Award from the Society for Mathematical Psychology (2005), the Early Investigator Award from the Society of Experimental Psychologists (2007), and the Distinguished Scientific Award for Early Career Contribution to Psychology (in the area of cognition and human learning) from the American Psychological Association (2008).

More from the Same Authors