Timezone: »
“Differentiable programs” are parameterized programs that allow themselves to be rewritten by gradient-based optimization. They are ubiquitous in modern-day machine learning. Recently, explicitly encoding our knowledge of the rules of the world in the form of differentiable programs has become more popular. In particular, differentiable realizations of well-studied processes such as physics, rendering, projective geometry, optimization to name a few, have enabled the design of several novel learning techniques. For example, many approaches have been proposed for unsupervised learning of depth estimation from unlabeled videos. Differentiable 3D reconstruction pipelines have demonstrated the potential for task-driven representation learning. A number of differentiable rendering approaches have been shown to enable single-view 3D reconstruction and other inverse graphics tasks (without requiring any form of 3D supervision). Differentiable physics simulators are being built to perform physical parameter estimation from video or for model-predictive control. While these advances have largely occurred in isolation, recent efforts have attempted to bridge the gap between the aforementioned areas. Narrowing the gaps between these otherwise isolated disciplines holds tremendous potential to yield new research directions and solve long-standing problems, particularly in understanding and reasoning about the 3D world.
Hence, we propose the “first workshop on differentiable computer vision, graphics, and physics in machine learning” with the aim of:
1. Narrowing the gap and fostering synergies between the computer vision, graphics, physics, and machine learning communities
2. Debating the promise and perils of differentiable methods, and identifying challenges that need to be overcome
3. Raising awareness about these techniques to the larger ML community
4. Discussing the broader impact of such techniques, and any ethical implications thereof.
Fri 6:45 a.m. - 7:00 a.m.
|
Opening remarks
(
Introductory remarks
)
|
Krishna Murthy Jatavallabhula · Kelsey Allen · Johanna Hansen · Victoria Dean 🔗 |
Fri 7:00 a.m. - 7:30 a.m.
|
Sanja Fidler
(
Invited talk
)
|
Sanja Fidler 🔗 |
Fri 7:30 a.m. - 8:00 a.m.
|
Andrea Tagliasacchi
(
Invited talk
)
|
Andrea Tagliasacchi 🔗 |
Fri 8:02 a.m. - 8:31 a.m.
|
Peter Battaglia
(
Invited talk
)
SlidesLive Video » |
Peter Battaglia 🔗 |
Fri 8:32 a.m. - 8:37 a.m.
|
Peter Battaglia - Q&A
(
Q&A
)
|
🔗 |
Fri 8:38 a.m. - 8:53 a.m.
|
Camillo Jose Taylor
(
Invited talk
)
SlidesLive Video » |
Camillo Taylor 🔗 |
Fri 8:54 a.m. - 8:59 a.m.
|
Camillo Jose Taylor - Q&A
(
Q&A
)
|
🔗 |
Fri 9:00 a.m. - 9:13 a.m.
|
Oral 01: phiflow - A differentiable PDE solving framework for deep learning via physical simulations
(
Contributed Talk
)
SlidesLive Video » |
Nils Thuerey 🔗 |
Fri 9:13 a.m. - 9:23 a.m.
|
Oral 02: Differentiable HDR image synthesis using multi-exposure images
(
Contributed Talk
)
SlidesLive Video » |
Jung Hee Kim 🔗 |
Fri 9:23 a.m. - 9:35 a.m.
|
Oral 03: DELUCA - Differentiable control library - environments, methods, and benchmarking
(
Contributed Talk
)
SlidesLive Video » |
Paula Gradu 🔗 |
Fri 9:35 a.m. - 9:44 a.m.
|
Oral 04: Blendshape-augmented facial action units detection
(
Contributed Talk
)
SlidesLive Video » |
Zijun Cui 🔗 |
Fri 9:44 a.m. - 9:57 a.m.
|
Oral 05: Inverse articulated-body dynamics from video via variational sequential Monte-Carlo
(
Contributed Talk
)
SlidesLive Video » |
Dan Biderman 🔗 |
Fri 9:58 a.m. - 10:08 a.m.
|
Contributed Talk - Q&A
(
Q&A
)
|
🔗 |
Fri 10:10 a.m. - 10:35 a.m.
|
Bethany Lusch
(
Invited talk
)
SlidesLive Video » |
Bethany Lusch 🔗 |
Fri 10:36 a.m. - 10:41 a.m.
|
Bethany Lusch - Q&A
(
Q&A
)
|
🔗 |
Fri 10:42 a.m. - 11:13 a.m.
|
Yuanming Hu
(
Invited talk
)
SlidesLive Video » |
Yuanming Hu 🔗 |
Fri 11:14 a.m. - 11:19 a.m.
|
Yuanming Hu - Q&A
(
Q&A
)
|
🔗 |
Fri 11:20 a.m. - 11:39 a.m.
|
Georgia Gkioxari
(
Invited talk
)
SlidesLive Video » |
Georgia Gkioxari 🔗 |
Fri 11:40 a.m. - 11:45 a.m.
|
Georgia Gkioxari - Q&A
(
Q&A
)
|
🔗 |
Fri 11:46 a.m. - 12:16 p.m.
|
Ming Lin
(
Invited talk
)
|
Ming Lin 🔗 |
Fri 12:16 p.m. - 1:15 p.m.
|
Panel Discussion
|
🔗 |
Fri 1:15 p.m. - 2:30 p.m.
|
Poster session (gather.town) ( Poster Session ) link » | 🔗 |
-
|
Poster 01: Using differentiable physics for self-supervised assimilation of chaotic dynamical systems
(
Contributed poster
)
SlidesLive Video » |
John McCabe 🔗 |
-
|
Poster 02: Learned equivariant rendering without transformation supervision
(
Contributed poster
)
SlidesLive Video » |
Cinjon Resnick 🔗 |
-
|
Poster 03: Differentiable data augmentation with Kornia
(
Contributed poster
)
SlidesLive Video » |
Jian Shi 🔗 |
-
|
Poster 04: Semantic adversarial robustness with differentiable ray-tracing
(
Contributed poster
)
SlidesLive Video » |
Rahul Venkatesh 🔗 |
-
|
Poster 05: Inverse graphics GAN
(
Contributed poster
)
SlidesLive Video » |
Sebastian Lunz 🔗 |
-
|
Poster 06: Instance-wise depth and motion learning from monocular videos
(
Contributed poster
)
SlidesLive Video » |
Seokju Lee 🔗 |
-
|
Poster 07: System level differentiable simulation of radio access networks
(
Contributed poster
)
SlidesLive Video » |
Dmitriy Rivkin 🔗 |
-
|
Poster 08: Solving physics puzzles by reasoning about paths
(
Contributed poster
)
SlidesLive Video » |
Augustin Harter 🔗 |
-
|
Poster 09: Sparse-input neural network augmentations for differentiable simulators
(
Contributed poster
)
SlidesLive Video » |
Eric Heiden · David Millard 🔗 |
-
|
Poster 10: Tractable loss function and color image generation of multinary restricted Boltzmann machine
(
Contributed poster
)
SlidesLive Video » |
Juno Hwang 🔗 |
-
|
Poster 11: Differentiable path tracing by regularizing discontinuities
(
Contributed poster
)
SlidesLive Video » |
Peter Quinn 🔗 |
-
|
Poster 12: Spring-Rod system identification via differentiable physics engine
(
Contributed poster
)
SlidesLive Video » |
Kun Wang 🔗 |
-
|
Poster 13: End-to-end differentiable 6DoF object pose estimation with local and global constraints
(
Contributed poster
)
SlidesLive Video » |
Anshul Gupta · Joydeep Medhi · Aratrik Chattopadhyay · Vikram Gupta 🔗 |
-
|
Poster 14: MSR-Net: Multi-scale relighting network for one-to-one relighting
(
Contributed poster
)
SlidesLive Video » |
Nisarg Shah 🔗 |
-
|
Poster 15: Towards end-to-end training of proposal-based 3D human pose estimation
(
Contributed poster
)
SlidesLive Video » |
Daniel Ajisafe 🔗 |
Author Information
Krishna Murthy Jatavallabhula (Mila, Universite de Montreal)
Kelsey Allen (MIT)
Victoria Dean (CMU)
Johanna Hansen (McGill University)
Shuran Song (Columbia University)
Florian Shkurti (University of Toronto)
Liam Paull (Université de Montréal)
Derek Nowrouzezahrai (McGill University)
Josh Tenenbaum (MIT)
Josh Tenenbaum is an Associate Professor of Computational Cognitive Science at MIT in the Department of Brain and Cognitive Sciences and the Computer Science and Artificial Intelligence Laboratory (CSAIL). He received his PhD from MIT in 1999, and was an Assistant Professor at Stanford University from 1999 to 2002. He studies learning and inference in humans and machines, with the twin goals of understanding human intelligence in computational terms and bringing computers closer to human capacities. He focuses on problems of inductive generalization from limited data -- learning concepts and word meanings, inferring causal relations or goals -- and learning abstract knowledge that supports these inductive leaps in the form of probabilistic generative models or 'intuitive theories'. He has also developed several novel machine learning methods inspired by human learning and perception, most notably Isomap, an approach to unsupervised learning of nonlinear manifolds in high-dimensional data. He has been Associate Editor for the journal Cognitive Science, has been active on program committees for the CogSci and NIPS conferences, and has co-organized a number of workshops, tutorials and summer schools in human and machine learning. Several of his papers have received outstanding paper awards or best student paper awards at the IEEE Computer Vision and Pattern Recognition (CVPR), NIPS, and Cognitive Science conferences. He is the recipient of the New Investigator Award from the Society for Mathematical Psychology (2005), the Early Investigator Award from the Society of Experimental Psychologists (2007), and the Distinguished Scientific Award for Early Career Contribution to Psychology (in the area of cognition and human learning) from the American Psychological Association (2008).
More from the Same Authors
-
2021 : ThreeDWorld: A Platform for Interactive Multi-Modal Physical Simulation »
Chuang Gan · Jeremy Schwartz · Seth Alter · Damian Mrowca · Martin Schrimpf · James Traer · Julian De Freitas · Jonas Kubilius · Abhishek Bhandwaldar · Nick Haber · Megumi Sano · Kuno Kim · Elias Wang · Michael Lingelbach · Aidan Curtis · Kevin Feigelis · Daniel Bear · Dan Gutfreund · David Cox · Antonio Torralba · James J DiCarlo · Josh Tenenbaum · Josh McDermott · Dan Yamins -
2021 : Physion: Evaluating Physical Prediction from Vision in Humans and Machines »
Daniel Bear · Elias Wang · Damian Mrowca · Felix Binder · Hsiao-Yu Tung · Pramod RT · Cameron Holdaway · Sirui Tao · Kevin Smith · Fan-Yun Sun · Fei-Fei Li · Nancy Kanwisher · Josh Tenenbaum · Dan Yamins · Judith Fan -
2021 Spotlight: Learning to Compose Visual Relations »
Nan Liu · Shuang Li · Yilun Du · Josh Tenenbaum · Antonio Torralba -
2021 Spotlight: Light Field Networks: Neural Scene Representations with Single-Evaluation Rendering »
Vincent Sitzmann · Semon Rezchikov · Bill Freeman · Josh Tenenbaum · Fredo Durand -
2021 Spotlight: Iterative Teaching by Label Synthesis »
Weiyang Liu · Zhen Liu · Hanchen Wang · Liam Paull · Bernhard Schölkopf · Adrian Weller -
2021 : STAR: A Benchmark for Situated Reasoning in Real-World Videos »
Bo Wu · Shoubin Yu · Zhenfang Chen · Josh Tenenbaum · Chuang Gan -
2021 : AutumnSynth: Synthesis of Reactive Programs with Structured Latent State »
Ria Das · Zenna Tavares · Josh Tenenbaum · Armando Solar-Lezama -
2021 : KitchenShift: Evaluating Zero-Shot Generalization of Imitation-Based Policy Learning Under Domain Shifts »
Eliot Xing · Abhinav Gupta · Samantha Powers · Victoria Dean -
2021 : Noether Networks: Meta-Learning Useful Conserved Quantities »
Ferran Alet · Dylan Doblar · Allan Zhou · Josh Tenenbaum · Kenji Kawaguchi · Chelsea Finn -
2021 : Synthesis of Reactive Programs with Structured Latent State »
Ria Das · Zenna Tavares · Armando Solar-Lezama · Josh Tenenbaum -
2021 : Towards Incorporating Rich Social Interactions Into MDPs »
Ravi Tejwani · Yen-Ling Kuo · Tianmin Shu · Bennett Stankovits · Dan Gutfreund · Josh Tenenbaum · Boris Katz · Andrei Barbu -
2021 : Learning to solve complex tasks by growing knowledge culturally across generations »
Michael Tessler · Jason Madeano · Pedro Tsividis · Noah Goodman · Josh Tenenbaum -
2022 Poster: Learning Physical Dynamics with Subequivariant Graph Neural Networks »
Jiaqi Han · Wenbing Huang · Hengbo Ma · Jiachen Li · Josh Tenenbaum · Chuang Gan -
2022 : Shared Hardware, Shared Baselines: An Offline Robotics Benchmark »
Gaoyue Zhou · Victoria Dean -
2022 : Hearing Touch: Using Contact Microphones for Robot Manipulation »
Shaden Alshammari · Victoria Dean · Tess Hellebrekers · Pedro Morgado · Abhinav Gupta -
2022 : Multi-Agent Reinforcement Learning for Fast-Timescale Demand Response »
Vincent Mai · Philippe Maisonneuve · Tianyu Zhang · Jorge Montalvo Arvizu · Liam Paull · Antoine Lesage-Landry -
2022 : Multi-Agent Reinforcement Learning for Fast-Timescale Demand Response »
Vincent Mai · Philippe Maisonneuve · Tianyu Zhang · Jorge Montalvo Arvizu · Liam Paull · Antoine Lesage-Landry -
2022 : Planning with Large Language Models for Code Generation »
Shun Zhang · Zhenfang Chen · Yikang Shen · Mingyu Ding · Josh Tenenbaum · Chuang Gan -
2022 : Is Conditional Generative Modeling all you need for Decision-Making? »
Anurag Ajay · Yilun Du · Abhi Gupta · Josh Tenenbaum · Tommi Jaakkola · Pulkit Agrawal -
2022 : Train Offline, Test Online: A Real Robot Learning Benchmark »
Gaoyue Zhou · Victoria Dean · Mohan Kumar Srirama · Aravind Rajeswaran · Jyothish Pari · Kyle Hatch · Aryan Jain · Tianhe Yu · Pieter Abbeel · Lerrel Pinto · Chelsea Finn · Abhinav Gupta -
2022 : Learning a Meta-Controller for Dynamic Grasping »
Yinsen Jia · Jingxi Xu · Dinesh Jayaraman · Shuran Song -
2022 : Imitation from Observation With Bootstrapped Contrastive Learning »
Medric Sonwa · Johanna Hansen · Eugene Belilovsky -
2022 : Fifteen-minute Competition Overview Video »
Tianpei Yang · Iuliia Kotseruba · Montgomery Alban · Amir Rasouli · Soheil Mohamad Alizadeh Shabestary · Randolph Goebel · Matthew Taylor · Liam Paull · Florian Shkurti -
2022 : Imitation from Observation With Bootstrapped Contrastive Learning »
Medric Sonwa · Johanna Hansen · Eugene Belilovsky -
2022 : Imitation from Observation With Bootstrapped Contrastive Learning »
Medric Sonwa · Johanna Hansen · Eugene Belilovsky -
2022 : Train Offline, Test Online: A Real Robot Learning Benchmark »
Gaoyue Zhou · Victoria Dean · Mohan Kumar Srirama · Aravind Rajeswaran · Jyothish Pari · Kyle Hatch · Aryan Jain · Tianhe Yu · Pieter Abbeel · Lerrel Pinto · Chelsea Finn · Abhinav Gupta -
2022 : Learning a Meta-Controller for Dynamic Grasping »
Yinsen Jia · Jingxi Xu · Dinesh Jayaraman · Shuran Song -
2022 Spotlight: Learning Physical Dynamics with Subequivariant Graph Neural Networks »
Jiaqi Han · Wenbing Huang · Hengbo Ma · Jiachen Li · Josh Tenenbaum · Chuang Gan -
2022 Spotlight: Lightning Talks 4B-1 »
Alexandra Senderovich · Zhijie Deng · Navid Ansari · Xuefei Ning · Yasmin Salehi · Xiang Huang · Chenyang Wu · Kelsey Allen · Jiaqi Han · Nikita Balagansky · Tatiana Lopez-Guevara · Tianci Li · Zhanhong Ye · Zixuan Zhou · Feng Zhou · Ekaterina Bulatova · Daniil Gavrilov · Wenbing Huang · Dennis Giannacopoulos · Hans-peter Seidel · Anton Obukhov · Kimberly Stachenfeld · Hongsheng Liu · Jun Zhu · Junbo Zhao · Hengbo Ma · Nima Vahidi Ferdowsi · Zongzhang Zhang · Vahid Babaei · Jiachen Li · Alvaro Sanchez Gonzalez · Yang Yu · Shi Ji · Maxim Rakhuba · Tianchen Zhao · Yiping Deng · Peter Battaglia · Josh Tenenbaum · Zidong Wang · Chuang Gan · Changcheng Tang · Jessica Hamrick · Kang Yang · Tobias Pfaff · Yang Li · Shuang Liang · Min Wang · Huazhong Yang · Haotian CHU · Yu Wang · Fan Yu · Bei Hua · Lei Chen · Bin Dong -
2022 Competition: Driving SMARTS »
Amir Rasouli · Matthew Taylor · Iuliia Kotseruba · Tianpei Yang · Randolph Goebel · Soheil Mohamad Alizadeh Shabestary · Montgomery Alban · Florian Shkurti · Liam Paull -
2022 Poster: 3D Concept Grounding on Neural Fields »
Yining Hong · Yilun Du · Chunru Lin · Josh Tenenbaum · Chuang Gan -
2022 Poster: Patching open-vocabulary models by interpolating weights »
Gabriel Ilharco · Mitchell Wortsman · Samir Yitzhak Gadre · Shuran Song · Hannaneh Hajishirzi · Simon Kornblith · Ali Farhadi · Ludwig Schmidt -
2022 Poster: PDSketch: Integrated Domain Programming, Learning, and Planning »
Jiayuan Mao · Tomás Lozano-Pérez · Josh Tenenbaum · Leslie Kaelbling -
2022 Poster: Attention-based Neural Cellular Automata »
Mattie Tesfaldet · Derek Nowrouzezahrai · Chris Pal -
2022 Poster: Drawing out of Distribution with Neuro-Symbolic Generative Models »
Yichao Liang · Josh Tenenbaum · Tuan Anh Le · Siddharth N -
2022 Poster: Learning Neural Acoustic Fields »
Andrew Luo · Yilun Du · Michael Tarr · Josh Tenenbaum · Antonio Torralba · Chuang Gan -
2022 Poster: ASPiRe: Adaptive Skill Priors for Reinforcement Learning »
Mengda Xu · Manuela Veloso · Shuran Song -
2022 Poster: When to Make Exceptions: Exploring Language Models as Accounts of Human Moral Judgment »
Zhijing Jin · Sydney Levine · Fernando Gonzalez Adauto · Ojasv Kamal · Maarten Sap · Mrinmaya Sachan · Rada Mihalcea · Josh Tenenbaum · Bernhard Schölkopf -
2022 Poster: HandMeThat: Human-Robot Communication in Physical and Social Environments »
Yanming Wan · Jiayuan Mao · Josh Tenenbaum -
2022 Poster: Communicating Natural Programs to Humans and Machines »
Sam Acquaviva · Yewen Pu · Marta Kryven · Theodoros Sechopoulos · Catherine Wong · Gabrielle Ecanow · Maxwell Nye · Michael Tessler · Josh Tenenbaum -
2021 : Spotlight Talk: Learning to solve complex tasks by growing knowledge culturally across generations »
Noah Goodman · Josh Tenenbaum · Michael Tessler · Jason Madeano -
2021 : Shuran Song »
Shuran Song -
2021 : Kelsey Allen »
Kelsey Allen -
2021 : Panel A: Deployable Learning Algorithms for Embodied Systems »
Shuran Song · Martin Riedmiller · Nick Roy · Aude G Billard · Angela Schoellig · SiQi Zhou -
2021 Workshop: Physical Reasoning and Inductive Biases for the Real World »
Krishna Murthy Jatavallabhula · Rika Antonova · Kevin Smith · Hsiao-Yu Tung · Florian Shkurti · Jeannette Bohg · Josh Tenenbaum -
2021 : Deployable Robot Learning with Self-supervised Spatial Action Maps »
Shuran Song -
2021 : NeurIPS RL Competitions Results Presentations »
Rohin Shah · Liam Paull · Tabitha Lee · Tim Rocktäschel · Heinrich Küttler · Sharada Mohanty · Manuel Wuethrich -
2021 Oral: Interesting Object, Curious Agent: Learning Task-Agnostic Exploration »
Simone Parisi · Victoria Dean · Deepak Pathak · Abhinav Gupta -
2021 Poster: Learning to Compose Visual Relations »
Nan Liu · Shuang Li · Yilun Du · Josh Tenenbaum · Antonio Torralba -
2021 : AI Driving Olympics + Q&A »
Andrea Censi · Liam Paull · Jacopo Tani · Emilio Frazzoli · Holger Caesar · Matthew Walter · Andrea Daniele · Sahika Genc · Sharada Mohanty -
2021 Poster: Improving Coherence and Consistency in Neural Sequence Models with Dual-System, Neuro-Symbolic Reasoning »
Maxwell Nye · Michael Tessler · Josh Tenenbaum · Brenden Lake -
2021 Poster: Dynamic Visual Reasoning by Learning Differentiable Physics Models from Video and Language »
Mingyu Ding · Zhenfang Chen · Tao Du · Ping Luo · Josh Tenenbaum · Chuang Gan -
2021 Poster: Learning Signal-Agnostic Manifolds of Neural Fields »
Yilun Du · Katie Collins · Josh Tenenbaum · Vincent Sitzmann -
2021 Poster: Light Field Networks: Neural Scene Representations with Single-Evaluation Rendering »
Vincent Sitzmann · Semon Rezchikov · Bill Freeman · Josh Tenenbaum · Fredo Durand -
2021 Poster: Grammar-Based Grounded Lexicon Learning »
Jiayuan Mao · Freda Shi · Jiajun Wu · Roger Levy · Josh Tenenbaum -
2021 Poster: Unsupervised Learning of Compositional Energy Concepts »
Yilun Du · Shuang Li · Yash Sharma · Josh Tenenbaum · Igor Mordatch -
2021 Poster: Interesting Object, Curious Agent: Learning Task-Agnostic Exploration »
Simone Parisi · Victoria Dean · Deepak Pathak · Abhinav Gupta -
2021 Poster: A Bayesian-Symbolic Approach to Reasoning and Learning in Intuitive Physics »
Kai Xu · Akash Srivastava · Dan Gutfreund · Felix Sosa · Tomer Ullman · Josh Tenenbaum · Charles Sutton -
2021 Poster: PTR: A Benchmark for Part-based Conceptual, Relational, and Physical Reasoning »
Yining Hong · Li Yi · Josh Tenenbaum · Antonio Torralba · Chuang Gan -
2021 Poster: Leveraging SE(3) Equivariance for Self-supervised Category-Level Object Pose Estimation from Point Clouds »
Xiaolong Li · Yijia Weng · Li Yi · Leonidas Guibas · A. Abbott · Shuran Song · He Wang -
2021 Poster: Iterative Teaching by Label Synthesis »
Weiyang Liu · Zhen Liu · Hanchen Wang · Liam Paull · Bernhard Schölkopf · Adrian Weller -
2021 Poster: Noether Networks: meta-learning useful conserved quantities »
Ferran Alet · Dylan Doblar · Allan Zhou · Josh Tenenbaum · Kenji Kawaguchi · Chelsea Finn -
2021 Poster: 3DP3: 3D Scene Perception via Probabilistic Programming »
Nishad Gothoskar · Marco Cusumano-Towner · Ben Zinberg · Matin Ghavamizadeh · Falk Pollok · Austin Garrett · Josh Tenenbaum · Dan Gutfreund · Vikash Mansinghka -
2021 : ThreeDWorld: A Platform for Interactive Multi-Modal Physical Simulation »
Chuang Gan · Jeremy Schwartz · Seth Alter · Damian Mrowca · Martin Schrimpf · James Traer · Julian De Freitas · Jonas Kubilius · Abhishek Bhandwaldar · Nick Haber · Megumi Sano · Kuno Kim · Elias Wang · Michael Lingelbach · Aidan Curtis · Kevin Feigelis · Daniel Bear · Dan Gutfreund · David Cox · Antonio Torralba · James J DiCarlo · Josh Tenenbaum · Josh McDermott · Dan Yamins -
2020 : Conclusions and Wrap up »
Liam Paull -
2020 : Interviews with winners »
Liam Paull -
2020 : Live robot competition (LF, LFP, lFVM) »
Liam Paull -
2020 : Intro to Urban League (includes highlights from semifinals) »
Liam Paull -
2020 : Advanced Perception League »
Liam Paull -
2020 : Introduction to AIDO »
Liam Paull -
2020 Workshop: Workshop on Computer Assisted Programming (CAP) »
Augustus Odena · Charles Sutton · Nadia Polikarpova · Josh Tenenbaum · Armando Solar-Lezama · Isil Dillig -
2020 : Q/A and Discussion for Sensing & Sampling Session »
Johanna Hansen · Yogesh A Girdhar · Hannah Kerner · Renaud Detry -
2020 : Sensors and Sampling »
Johanna Hansen -
2020 Workshop: AI for Earth Sciences »
Surya Karthik Mukkavilli · Johanna Hansen · Natasha Dudek · Tom Beucler · Kelly Kochanski · Mayur Mudigonda · Karthik Kashinath · Amy McGovern · Paul D Miller · Chad Frischmann · Pierre Gentine · Gregory Dudek · Aaron Courville · Daniel Kammen · Vipin Kumar -
2020 : Invited Talk: Growing into intelligence the human way: What do we start with, and how do we learn the rest? »
Josh Tenenbaum -
2020 : Panel Discussion »
Jessica Hamrick · Klaus Greff · Michelle A. Lee · Irina Higgins · Josh Tenenbaum -
2020 Workshop: KR2ML - Knowledge Representation and Reasoning Meets Machine Learning »
Veronika Thost · Kartik Talamadupula · Vivek Srikumar · Chenwei Zhang · Josh Tenenbaum -
2020 : Opening remarks »
Krishna Murthy Jatavallabhula · Kelsey Allen · Johanna Hansen · Victoria Dean -
2020 Poster: Promoting Coordination through Policy Regularization in Multi-Agent Deep Reinforcement Learning »
Julien Roy · Paul Barde · Félix Harvey · Derek Nowrouzezahrai · Chris Pal -
2020 Poster: Your GAN is Secretly an Energy-based Model and You Should Use Discriminator Driven Latent Sampling »
Tong Che · Ruixiang ZHANG · Jascha Sohl-Dickstein · Hugo Larochelle · Liam Paull · Yuan Cao · Yoshua Bengio -
2020 Poster: Adversarial Soft Advantage Fitting: Imitation Learning without Policy Optimization »
Paul Barde · Julien Roy · Wonseok Jeon · Joelle Pineau · Chris Pal · Derek Nowrouzezahrai -
2020 Poster: Online Bayesian Goal Inference for Boundedly Rational Planning Agents »
Tan Zhi-Xuan · Jordyn Mann · Tom Silver · Josh Tenenbaum · Vikash Mansinghka -
2020 Poster: Program Synthesis with Pragmatic Communication »
Yewen Pu · Kevin Ellis · Marta Kryven · Josh Tenenbaum · Armando Solar-Lezama -
2020 Poster: Learning Compositional Rules via Neural Program Synthesis »
Maxwell Nye · Armando Solar-Lezama · Josh Tenenbaum · Brenden Lake -
2020 Poster: Learning abstract structure for drawing by efficient motor program induction »
Lucas Tian · Kevin Ellis · Marta Kryven · Josh Tenenbaum -
2020 Spotlight: Adversarial Soft Advantage Fitting: Imitation Learning without Policy Optimization »
Paul Barde · Julien Roy · Wonseok Jeon · Joelle Pineau · Chris Pal · Derek Nowrouzezahrai -
2020 Oral: Learning abstract structure for drawing by efficient motor program induction »
Lucas Tian · Kevin Ellis · Marta Kryven · Josh Tenenbaum -
2020 Poster: Look-ahead Meta Learning for Continual Learning »
Gunshi Gupta · Karmesh Yadav · Liam Paull -
2020 Oral: Look-ahead Meta Learning for Continual Learning »
Gunshi Gupta · Karmesh Yadav · Liam Paull -
2020 Poster: Multi-Plane Program Induction with 3D Box Priors »
Yikai Li · Jiayuan Mao · Xiuming Zhang · Bill Freeman · Josh Tenenbaum · Noah Snavely · Jiajun Wu -
2020 Poster: Learning Physical Graph Representations from Visual Scenes »
Daniel Bear · Chaofei Fan · Damian Mrowca · Yunzhu Li · Seth Alter · Aran Nayebi · Jeremy Schwartz · Li Fei-Fei · Jiajun Wu · Josh Tenenbaum · Daniel Yamins -
2020 Oral: Learning Physical Graph Representations from Visual Scenes »
Daniel Bear · Chaofei Fan · Damian Mrowca · Yunzhu Li · Seth Alter · Aran Nayebi · Jeremy Schwartz · Li Fei-Fei · Jiajun Wu · Josh Tenenbaum · Daniel Yamins -
2019 : Lunch break & Poster session »
Breandan Considine · Michael Innes · Du Phan · Dougal Maclaurin · Robin Manhaeve · Alexey Radul · Shashi Gowda · Ekansh Sharma · Eli Sennesh · Maxim Kochurov · Gordon Plotkin · Thomas Wiecki · Navjot Kukreja · Chung-chieh Shan · Matthew Johnson · Dan Belov · Neeraj Pradhan · Wannes Meert · Angelika Kimmig · Luc De Raedt · Brian Patton · Matthew Hoffman · Rif A. Saurous · Daniel Roy · Eli Bingham · Martin Jankowiak · Colin Carroll · Junpeng Lao · Liam Paull · Martin Abadi · Angel Rojas Jimenez · JP Chen -
2019 : Panel Discussion »
Linda Smith · Josh Tenenbaum · Lisa Anne Hendricks · James McClelland · Timothy Lillicrap · Jesse Thomason · Jason Baldridge · Louis-Philippe Morency -
2019 : Closing remarks »
Dan Rosenbaum · Marta Garnelo · Peter Battaglia · Kelsey Allen · Ilker Yildirim -
2019 : Josh Tenenbaum »
Josh Tenenbaum -
2019 : Panel »
Sanja Fidler · Josh Tenenbaum · Tatiana López-Guevara · Danilo Jimenez Rezende · Niloy Mitra -
2019 : Poster Session »
Ethan Harris · Tom White · Oh Hyeon Choung · Takashi Shinozaki · Dipan Pal · Katherine L. Hermann · Judy Borowski · Camilo Fosco · Chaz Firestone · Vijay Veerabadran · Benjamin Lahner · Chaitanya Ryali · Fenil Doshi · Pulkit Singh · Sharon Zhou · Michel Besserve · Michael Chang · Anelise Newman · Mahesan Niranjan · Jonathon Hare · Daniela Mihai · Marios Savvides · Simon Kornblith · Christina M Funke · Aude Oliva · Virginia de Sa · Dmitry Krotov · Colin Conwell · George Alvarez · Alex Kolchinski · Shengjia Zhao · Mitchell Gordon · Michael Bernstein · Stefano Ermon · Arash Mehrjou · Bernhard Schölkopf · John Co-Reyes · Michael Janner · Jiajun Wu · Josh Tenenbaum · Sergey Levine · Yalda Mohsenzadeh · Zhenglong Zhou -
2019 : AI Driving Olympics 3 »
Caglayan Dicle · Liam Paull · Jacopo Tani · Sunil Mallya · Sahika Genc · Kirsten Bowser · Tao Sun · Yunzhe Tao · Philippe Marcotte · Hsu-kuang Chiu · Eric Wolff -
2019 : Josh Tenenbaum »
Josh Tenenbaum -
2019 : Opening Remarks »
Dan Rosenbaum · Marta Garnelo · Peter Battaglia · Kelsey Allen · Ilker Yildirim -
2019 Workshop: Perception as generative reasoning: structure, causality, probability »
Dan Rosenbaum · Marta Garnelo · Peter Battaglia · Kelsey Allen · Ilker Yildirim -
2019 Poster: Write, Execute, Assess: Program Synthesis with a REPL »
Kevin Ellis · Maxwell Nye · Yewen Pu · Felix Sosa · Josh Tenenbaum · Armando Solar-Lezama -
2019 Poster: ObjectNet: A large-scale bias-controlled dataset for pushing the limits of object recognition models »
Andrei Barbu · David Mayo · Julian Alverio · William Luo · Christopher Wang · Dan Gutfreund · Josh Tenenbaum · Boris Katz -
2019 Poster: Modeling Expectation Violation in Intuitive Physics with Coarse Probabilistic Object Representations »
Kevin Smith · Lingjie Mei · Shunyu Yao · Jiajun Wu · Elizabeth Spelke · Josh Tenenbaum · Tomer Ullman -
2019 Poster: Visual Concept-Metaconcept Learning »
Chi Han · Jiayuan Mao · Chuang Gan · Josh Tenenbaum · Jiajun Wu -
2019 Poster: Finding Friend and Foe in Multi-Agent Games »
Jack Serrino · Max Kleiman-Weiner · David Parkes · Josh Tenenbaum -
2019 Spotlight: Finding Friend and Foe in Multi-Agent Games »
Jack Serrino · Max Kleiman-Weiner · David Parkes · Josh Tenenbaum -
2018 : Live competition The AI Driving Olympics: Introduction to Duckietown and the AI Driving Olympics »
Liam Paull · Jacopo Tani · Kirsten Bowser · Lin Jin · Cameron Peron -
2018 : Coffee break + posters 1 »
Samuel Myer · Wei-Ning Hsu · Jialu Li · Monica Dinculescu · Lea Schönherr · Ehsan Hosseini-Asl · Skyler Seto · Oiwi Parker Jones · Imran Sheikh · Thomas Manzini · Yonatan Belinkov · Nadir Durrani · Alexander Amini · Johanna Hansen · Gabi Shalev · Jamin Shin · Paul Smolensky · Lisa Fan · Zining Zhu · Hamid Eghbal-zadeh · Benjamin Baer · Abelino Jimenez · Joao Felipe Santos · Jan Kremer · Erik McDermott · Andreas Krug · Tzeviya S Fuchs · Shuai Tang · Brandon Carter · David Gifford · Albert Zeyer · André Merboldt · Krishna Pillutla · Katherine Lee · Titouan Parcollet · Orhan Firat · Gautam Bhattacharya · JAHANGIR ALAM · Mirco Ravanelli -
2018 : Variadic Learning by Bayesian Nonparametric Deep Embedding »
Kelsey Allen -
2018 : Opening Remarks: Josh Tenenbaum »
Josh Tenenbaum -
2018 Workshop: Modeling the Physical World: Learning, Perception, and Control »
Jiajun Wu · Kelsey Allen · Kevin Smith · Jessica Hamrick · Emmanuel Dupoux · Marc Toussaint · Josh Tenenbaum -
2018 Poster: Learning to Reconstruct Shapes from Unseen Classes »
Xiuming Zhang · Zhoutong Zhang · Chengkai Zhang · Josh Tenenbaum · Bill Freeman · Jiajun Wu -
2018 Poster: Learning to Infer Graphics Programs from Hand-Drawn Images »
Kevin Ellis · Daniel Ritchie · Armando Solar-Lezama · Josh Tenenbaum -
2018 Poster: Learning Libraries of Subroutines for Neurally–Guided Bayesian Program Induction »
Kevin Ellis · Lucas Morales · Mathias Sablé-Meyer · Armando Solar-Lezama · Josh Tenenbaum -
2018 Oral: Learning to Reconstruct Shapes from Unseen Classes »
Xiuming Zhang · Zhoutong Zhang · Chengkai Zhang · Josh Tenenbaum · Bill Freeman · Jiajun Wu -
2018 Spotlight: Learning to Infer Graphics Programs from Hand-Drawn Images »
Kevin Ellis · Daniel Ritchie · Armando Solar-Lezama · Josh Tenenbaum -
2018 Spotlight: Learning Libraries of Subroutines for Neurally–Guided Bayesian Program Induction »
Kevin Ellis · Lucas Morales · Mathias Sablé-Meyer · Armando Solar-Lezama · Josh Tenenbaum -
2018 Poster: Visual Object Networks: Image Generation with Disentangled 3D Representations »
Jun-Yan Zhu · Zhoutong Zhang · Chengkai Zhang · Jiajun Wu · Antonio Torralba · Josh Tenenbaum · Bill Freeman -
2018 Poster: Learning to Share and Hide Intentions using Information Regularization »
DJ Strouse · Max Kleiman-Weiner · Josh Tenenbaum · Matt Botvinick · David Schwab -
2018 Poster: Learning to Exploit Stability for 3D Scene Parsing »
Yilun Du · Zhijian Liu · Hector Basevi · Ales Leonardis · Bill Freeman · Josh Tenenbaum · Jiajun Wu -
2018 Poster: End-to-End Differentiable Physics for Learning and Control »
Filipe de Avila Belbute Peres · Kevin Smith · Kelsey Allen · Josh Tenenbaum · J. Zico Kolter -
2018 Spotlight: End-to-End Differentiable Physics for Learning and Control »
Filipe de Avila Belbute Peres · Kevin Smith · Kelsey Allen · Josh Tenenbaum · J. Zico Kolter -
2018 Poster: Neural-Symbolic VQA: Disentangling Reasoning from Vision and Language Understanding »
Kexin Yi · Jiajun Wu · Chuang Gan · Antonio Torralba · Pushmeet Kohli · Josh Tenenbaum -
2018 Poster: 3D-Aware Scene Manipulation via Inverse Graphics »
Shunyu Yao · Tzu Ming Hsu · Jun-Yan Zhu · Jiajun Wu · Antonio Torralba · Bill Freeman · Josh Tenenbaum -
2018 Spotlight: Neural-Symbolic VQA: Disentangling Reasoning from Vision and Language Understanding »
Kexin Yi · Jiajun Wu · Chuang Gan · Antonio Torralba · Pushmeet Kohli · Josh Tenenbaum -
2018 Poster: Flexible neural representation for physics prediction »
Damian Mrowca · Chengxu Zhuang · Elias Wang · Nick Haber · Li Fei-Fei · Josh Tenenbaum · Daniel Yamins -
2017 : Panel Discussion »
Matt Botvinick · Emma Brunskill · Marcos Campos · Jan Peters · Doina Precup · David Silver · Josh Tenenbaum · Roy Fox -
2017 : Learn to learn high-dimensional models from few examples »
Josh Tenenbaum -
2017 : Welcome: Josh Tenenbaum »
Josh Tenenbaum -
2017 Workshop: Learning Disentangled Features: from Perception to Control »
Emily Denton · Siddharth Narayanaswamy · Tejas Kulkarni · Honglak Lee · Diane Bouchacourt · Josh Tenenbaum · David Pfau -
2017 : Panel: "How can we characterise the landscape of intelligent systems and locate human-like intelligence in it?" »
Josh Tenenbaum · Gary Marcus · Katja Hofmann -
2017 : Joshua Tenenbaum: 'Types of intelligence: why human-like AI is important' »
Josh Tenenbaum -
2017 Spotlight: Shape and Material from Sound »
Zhoutong Zhang · Qiujia Li · Zhengjia Huang · Jiajun Wu · Josh Tenenbaum · Bill Freeman -
2017 Spotlight: Scene Physics Acquisition via Visual De-animation »
Jiajun Wu · Erika Lu · Pushmeet Kohli · Bill Freeman · Josh Tenenbaum -
2017 Poster: Learning to See Physics via Visual De-animation »
Jiajun Wu · Erika Lu · Pushmeet Kohli · Bill Freeman · Josh Tenenbaum -
2017 Poster: Shape and Material from Sound »
Zhoutong Zhang · Qiujia Li · Zhengjia Huang · Jiajun Wu · Josh Tenenbaum · Bill Freeman -
2017 Poster: MarrNet: 3D Shape Reconstruction via 2.5D Sketches »
Jiajun Wu · Yifan Wang · Tianfan Xue · Xingyuan Sun · Bill Freeman · Josh Tenenbaum -
2017 Poster: Self-Supervised Intrinsic Image Decomposition »
Michael Janner · Jiajun Wu · Tejas Kulkarni · Ilker Yildirim · Josh Tenenbaum -
2017 Tutorial: Engineering and Reverse-Engineering Intelligence Using Probabilistic Programs, Program Induction, and Deep Learning »
Josh Tenenbaum · Vikash Mansinghka -
2016 : Datasets, Methodology, and Challenges in Intuitive Physics »
Emmanuel Dupoux · Josh Tenenbaum -
2016 : Josh Tenenbaum »
Josh Tenenbaum -
2016 : Reverse engineering human cooperation (or, How to build machines that treat people like people) »
Josh Tenenbaum · Max Kleiman-Weiner -
2016 : Naive Physics 101: A Tutorial »
Emmanuel Dupoux · Josh Tenenbaum -
2016 : Opening Remarks »
Josh Tenenbaum -
2016 Workshop: Intuitive Physics »
Adam Lerer · Jiajun Wu · Josh Tenenbaum · Emmanuel Dupoux · Rob Fergus -
2016 Poster: Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstraction and Intrinsic Motivation »
Tejas Kulkarni · Karthik Narasimhan · Ardavan Saeedi · Josh Tenenbaum -
2016 Poster: Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling »
Jiajun Wu · Chengkai Zhang · Tianfan Xue · Bill Freeman · Josh Tenenbaum -
2016 Poster: Sampling for Bayesian Program Learning »
Kevin Ellis · Armando Solar-Lezama · Josh Tenenbaum -
2016 Poster: Probing the Compositionality of Intuitive Functions »
Eric Schulz · Josh Tenenbaum · David Duvenaud · Maarten Speekenbrink · Samuel J Gershman -
2015 Workshop: Black box learning and inference »
Josh Tenenbaum · Jan-Willem van de Meent · Tejas Kulkarni · S. M. Ali Eslami · Brooks Paige · Frank Wood · Zoubin Ghahramani -
2015 : Discussion Panel with Morning Speakers (Day 1) »
Pedro Domingos · Stephen H Muggleton · Rina Dechter · Josh Tenenbaum -
2015 : Cognitive Foundations for Common-Sense Knowledge Representation and Reasoning »
Josh Tenenbaum -
2015 Poster: Softstar: Heuristic-Guided Probabilistic Inference »
Mathew Monfort · Brenden M Lake · Brenden Lake · Brian Ziebart · Patrick Lucey · Josh Tenenbaum -
2015 Poster: Deep Convolutional Inverse Graphics Network »
Tejas Kulkarni · William Whitney · Pushmeet Kohli · Josh Tenenbaum -
2015 Spotlight: Deep Convolutional Inverse Graphics Network »
Tejas Kulkarni · William Whitney · Pushmeet Kohli · Josh Tenenbaum -
2015 Poster: Galileo: Perceiving Physical Object Properties by Integrating a Physics Engine with Deep Learning »
Jiajun Wu · Ilker Yildirim · Joseph Lim · Bill Freeman · Josh Tenenbaum -
2015 Poster: Unsupervised Learning by Program Synthesis »
Kevin Ellis · Armando Solar-Lezama · Josh Tenenbaum -
2014 Workshop: 3rd NIPS Workshop on Probabilistic Programming »
Daniel Roy · Josh Tenenbaum · Thomas Dietterich · Stuart J Russell · YI WU · Ulrik R Beierholm · Alp Kucukelbir · Zenna Tavares · Yura Perov · Daniel Lee · Brian Ruttenberg · Sameer Singh · Michael Hughes · Marco Gaboardi · Alexey Radul · Vikash Mansinghka · Frank Wood · Sebastian Riedel · Prakash Panangaden -
2013 Workshop: Deep Learning »
Yoshua Bengio · Hugo Larochelle · Russ Salakhutdinov · Tomas Mikolov · Matthew D Zeiler · David Mcallester · Nando de Freitas · Josh Tenenbaum · Jian Zhou · Volodymyr Mnih -
2013 Poster: One-shot learning by inverting a compositional causal process »
Brenden M Lake · Russ Salakhutdinov · Josh Tenenbaum -
2013 Poster: Approximate Bayesian Image Interpretation using Generative Probabilistic Graphics Programs »
Vikash Mansinghka · Tejas D Kulkarni · Yura N Perov · Josh Tenenbaum -
2013 Oral: Approximate Bayesian Image Interpretation using Generative Probabilistic Graphics Programs »
Vikash Mansinghka · Tejas D Kulkarni · Yura N Perov · Josh Tenenbaum -
2011 Workshop: Challenges in Learning Hierarchical Models: Transfer Learning and Optimization »
Quoc V. Le · Marc'Aurelio Ranzato · Russ Salakhutdinov · Josh Tenenbaum · Andrew Y Ng -
2011 Poster: Learning to Learn with Compound HD Models »
Russ Salakhutdinov · Josh Tenenbaum · Antonio Torralba -
2011 Spotlight: Learning to Learn with Compound HD Models »
Russ Salakhutdinov · Josh Tenenbaum · Antonio Torralba -
2010 Workshop: Transfer Learning Via Rich Generative Models. »
Russ Salakhutdinov · Ryan Adams · Josh Tenenbaum · Zoubin Ghahramani · Tom Griffiths -
2010 Invited Talk: How to Grow a Mind: Statistics, Structure and Abstraction »
Josh Tenenbaum -
2010 Poster: Dynamic Infinite Relational Model for Time-varying Relational Data Analysis »
Katsuhiko Ishiguro · Tomoharu Iwata · Naonori Ueda · Josh Tenenbaum -
2010 Poster: Nonparametric Bayesian Policy Priors for Reinforcement Learning »
Finale P Doshi-Velez · David Wingate · Nicholas Roy · Josh Tenenbaum -
2009 Workshop: Bounded-rational analyses of human cognition: Bayesian models, approximate inference, and the brain »
Noah Goodman · Edward Vul · Tom Griffiths · Josh Tenenbaum -
2009 Workshop: Analyzing Networks and Learning With Graphs »
Edo M Airoldi · Jure Leskovec · Jon Kleinberg · Josh Tenenbaum -
2009 Poster: Perceptual Multistability as Markov Chain Monte Carlo Inference »
Samuel J Gershman · Edward Vul · Josh Tenenbaum -
2009 Poster: Help or Hinder: Bayesian Models of Social Goal Inference »
Tomer D Ullman · Chris L Baker · Owen Macindoe · Owain Evans · Noah Goodman · Josh Tenenbaum -
2009 Spotlight: Perceptual Multistability as Markov Chain Monte Carlo Inference »
Samuel J Gershman · Edward Vul · Josh Tenenbaum -
2009 Poster: Explaining human multiple object tracking as resource-constrained approximate inference in a dynamic probabilistic model »
Edward Vul · Michael C Frank · George Alvarez · Josh Tenenbaum -
2009 Oral: Explaining human multiple object tracking as resource-constrained approximate inference in a dynamic probabilistic model »
Edward Vul · Michael C Frank · George Alvarez · Josh Tenenbaum -
2009 Poster: Modelling Relational Data using Bayesian Clustered Tensor Factorization »
Ilya Sutskever · Russ Salakhutdinov · Josh Tenenbaum -
2008 Workshop: Probabilistic Programming: Universal Languages, Systems and Applications »
Daniel Roy · John Winn · David A McAllester · Vikash Mansinghka · Josh Tenenbaum -
2008 Workshop: Machine learning meets human learning »
Nathaniel D Daw · Tom Griffiths · Josh Tenenbaum · Jerry Zhu -
2007 Workshop: The Grammar of Vision: Probabilistic Grammar-Based Models for Visual Scene Understanding and Object Categorization »
Virginia Savova · Josh Tenenbaum · Leslie Kaelbling · Alan Yuille -
2007 Spotlight: A Bayesian Framework for Cross-Situational Word-Learning »
Michael C Frank · Noah Goodman · Josh Tenenbaum -
2007 Poster: A Bayesian Framework for Cross-Situational Word-Learning »
Michael C Frank · Noah Goodman · Josh Tenenbaum -
2007 Poster: A complexity measure for intuitive theories »
Charles Kemp · Noah Goodman · Josh Tenenbaum -
2006 Poster: Combining causal and similarity-based reasoning »
Charles Kemp · Patrick Shafto · Allison Berke · Josh Tenenbaum -
2006 Poster: Multiple timescales and uncertainty in motor adaptation »
Konrad P Kording · Josh Tenenbaum · Reza Shadmehr -
2006 Poster: Learning annotated hierarchies from relational data »
Daniel Roy · Charles Kemp · Vikash Mansinghka · Josh Tenenbaum -
2006 Talk: Learning annotated hierarchies from relational data »
Daniel Roy · Charles Kemp · Vikash Mansinghka · Josh Tenenbaum -
2006 Spotlight: Multiple timescales and uncertainty in motor adaptation »
Konrad P Kording · Josh Tenenbaum · Reza Shadmehr -
2006 Talk: Combining causal and similarity-based reasoning »
Charles Kemp · Patrick Shafto · Allison Berke · Josh Tenenbaum -
2006 Poster: Causal inference in sensorimotor integration »
Konrad P Kording · Josh Tenenbaum -
2006 Tutorial: Bayesian Models of Human Learning and Inference »
Josh Tenenbaum