Timezone: »
In recent years, the use of deep neural networks as function approximators has enabled researchers to extend reinforcement learning techniques to solve increasingly complex control tasks. The emerging field of deep reinforcement learning has led to remarkable empirical results in rich and varied domains like robotics, strategy games, and multiagent interactions. This workshop will bring together researchers working at the intersection of deep learning and reinforcement learning, and it will help interested researchers outside of the field gain a high-level view about the current state of the art and potential directions for future contributions.
Fri 8:30 a.m. - 9:00 a.m.
|
Invited talk: PierreYves Oudeyer "Machines that invent their own problems: Towards open-ended learning of skills"
(
Talk
)
SlidesLive Video » |
Pierre-Yves Oudeyer 🔗 |
Fri 9:00 a.m. - 9:15 a.m.
|
Contributed Talk: Learning Functionally Decomposed Hierarchies for Continuous Control Tasks with Path Planning
(
Talk
)
SlidesLive Video » |
Sammy Christen · Lukas Jendele · Emre Aksan · Otmar Hilliges 🔗 |
Fri 9:15 a.m. - 9:30 a.m.
|
Contributed Talk: Maximum Reward Formulation In Reinforcement Learning
(
Talk
)
SlidesLive Video » |
Vijaya Sai Krishna Gottipati · Yashaswi Pathak · Rohan Nuttall · Sahir . · Raviteja Chunduru · Ahmed Touati · Sriram Ganapathi · Matthew Taylor · Sarath Chandar 🔗 |
Fri 9:30 a.m. - 9:45 a.m.
|
Contributed Talk: Accelerating Reinforcement Learning with Learned Skill Priors
(
Talk
)
SlidesLive Video » |
Karl Pertsch · Youngwoon Lee · Joseph Lim 🔗 |
Fri 9:45 a.m. - 10:00 a.m.
|
Contributed Talk: Asymmetric self-play for automatic goal discovery in robotic manipulation
(
Talk
)
SlidesLive Video » |
OpenAI Robotics · Matthias Plappert · Raul Sampedro · Tao Xu · Ilge Akkaya · Vineet Kosaraju · Peter Welinder · Ruben D'Sa · Arthur Petron · Henrique Ponde · Alex Paino · Hyeonwoo Noh Noh · Lilian Weng · Qiming Yuan · Casey Chu · Wojciech Zaremba
|
Fri 10:00 a.m. - 10:30 a.m.
|
Invited talk: Marc Bellemare "Autonomous navigation of stratospheric balloons using reinforcement learning"
(
Talk
)
|
Marc Bellemare 🔗 |
Fri 10:30 a.m. - 11:00 a.m.
|
Break
|
🔗 |
Fri 11:00 a.m. - 11:30 a.m.
|
Invited talk: Peter Stone "Grounded Simulation Learning for Sim2Real with Connections to Off-Policy Reinforcement Learning"
(
Talk
)
SlidesLive Video » For autonomous robots to operate in the open, dynamically changing world, they will need to be able to learn a robust set of skills from relatively little experience. This talk introduces Grounded Simulation Learning as a way to bridge the so-called reality gap between simulators and the real world in order to enable transfer learning from simulation to a real robot. Grounded Simulation Learning has led to the fastest known stable walk on a widely used humanoid robot. Connections to theoretical advances in off-policy reinforcement learning will be highlighted. |
Peter Stone 🔗 |
Fri 11:30 a.m. - 11:45 a.m.
|
Contributed Talk: Mirror Descent Policy Optimization
(
Talk
)
SlidesLive Video » |
Manan Tomar · Lior Shani · Yonathan Efroni · Mohammad Ghavamzadeh 🔗 |
Fri 11:45 a.m. - 12:00 p.m.
|
Contributed Talk: Planning from Pixels using Inverse Dynamics Models
(
Talk
)
SlidesLive Video » |
Keiran Paster · Sheila McIlraith · Jimmy Ba 🔗 |
Fri 12:00 p.m. - 12:30 p.m.
|
Invited talk: Matt Botvinick "Alchemy: A Benchmark Task Distribution for Meta-Reinforcement Learning Research"
(
Talk
)
SlidesLive Video » |
Matt Botvinick 🔗 |
Fri 12:30 p.m. - 1:30 p.m.
|
Poster session 1 ( Poster session ) link » | 🔗 |
Fri 1:30 p.m. - 2:00 p.m.
|
Invited talk: Susan Murphy "We used RL but…. Did it work?!"
(
Talk
)
SlidesLive Video » Digital Healthcare is a growing area of importance in modern healthcare due to its potential in helping individuals improve their behaviors so as to better manage chronic health challenges such as hypertension, mental health, cancer and so on. Digital apps and wearables, observe the user's state via sensors/self-report, deliver treatment actions (reminders, motivational messages, suggestions, social outreach,...) and observe rewards repeatedly on the user across time. This area is seeing increasing interest by RL researchers with the goal of including in the digital app/wearable an RL algorithm that "personalizes" the treatments to the user. But after RL is run on a number of users, how do we know whether the RL algorithm actually personalized the sequential treatments to the user? In this talk we report on our first efforts to address this question after our RL algorithm was deployed on each of 111 individuals with hypertension. |
Susan Murphy 🔗 |
Fri 2:00 p.m. - 2:15 p.m.
|
Contributed Talk: MaxEnt RL and Robust Control
(
Talk
)
SlidesLive Video » |
Benjamin Eysenbach · Sergey Levine 🔗 |
Fri 2:15 p.m. - 2:30 p.m.
|
Contributed Talk: Reset-Free Lifelong Learning with Skill-Space Planning
(
Talk
)
SlidesLive Video » |
Kevin Lu · Aditya Grover · Pieter Abbeel · Igor Mordatch 🔗 |
Fri 2:30 p.m. - 3:00 p.m.
|
Invited talk: Anusha Nagabandi "Model-based Deep Reinforcement Learning for Robotic Systems"
(
Talk
)
SlidesLive Video » Deep learning has shown promising results in robotics, but we are still far from having intelligent systems that can operate in the unstructured settings of the real world, where disturbances, variations, and unobserved factors lead to a dynamic environment. In this talk, we'll see that model-based deep RL can indeed allow for efficient skill acquisition, as well as the ability to repurpose models to solve a variety of tasks. We'll scale up these approaches to enable locomotion with a 6-DoF legged robot on varying terrains in the real world, as well as dexterous manipulation with a 24-DoF anthropomorphic hand in the real world. We then focus on the inevitable mismatch between an agent's training conditions and the test conditions in which it may actually be deployed, thus illuminating the need for adaptive systems. Inspired by the ability of humans and animals to adapt quickly in the face of unexpected changes, we present a meta-learning algorithm within this model-based RL framework to enable online adaptation of large, high-capacity models using only small amounts of data from the new task. These fast adaptation capabilities are seen in both simulation and the real-world, with experiments such as a 6-legged robot adapting online to an unexpected payload or suddenly losing a leg. We will then further extend the capabilities of our robotic systems by enabling the agents to reason directly from raw image observations. Bridging the benefits of representation learning techniques with the adaptation capabilities of meta-RL, we'll present a unified framework for effective meta-RL from images. With robotic arms in the real world that learn peg insertion and ethernet cable insertion to varying targets, we'll see the fast acquisition of new skills, directly from raw image observations in the real world. Finally, this talk will conclude that model-based deep RL provides a framework for making sense of the world, thus allowing for reasoning and adaptation capabilities that are necessary for successful operation in the dynamic settings of the real world. |
Anusha Nagabandi 🔗 |
Fri 3:00 p.m. - 3:30 p.m.
|
Break
|
🔗 |
Fri 3:30 p.m. - 4:00 p.m.
|
Invited talk: Ashley Edwards "Learning Offline from Observation"
(
Talk
)
SlidesLive Video » A common trope in sci-fi is to have a robot that can quickly solve some problem after watching a person, studying a video, or reading a book. While these settings are (currently) fictional, the benefits are real. Agents that can solve tasks by observing others have the potential to greatly reduce the burden of their human teachers, removing some of the need to hand-specify rewards or goals. In this talk, I consider the question of how an agent can not only learn by observing others, but also how it can learn quickly by training offline before taking any steps in the environment. First, I will describe an approach that trains a latent policy directly from state observations, which can then be quickly mapped to real actions in the agent’s environment. Then I will describe how we can train a novel value function, Q(s,s’), to learn off-policy from observations. Unlike previous imitation from observation approaches, this formulation goes beyond simply imitating and rather enables learning from potentially suboptimal observations. |
Ashley Edwards 🔗 |
Fri 4:00 p.m. - 4:07 p.m.
|
NeurIPS RL Competitions: Flatland challenge
(
Talk
)
SlidesLive Video » |
Sharada Mohanty 🔗 |
Fri 4:07 p.m. - 4:15 p.m.
|
NeurIPS RL Competitions: Learning to run a power network
(
Talk
)
SlidesLive Video » |
Antoine Marot 🔗 |
Fri 4:15 p.m. - 4:22 p.m.
|
NeurIPS RL Competitions: Procgen challenge
(
Talk
)
|
Sharada Mohanty 🔗 |
Fri 4:22 p.m. - 4:30 p.m.
|
NeurIPS RL Competitions: MineRL
(
Talk
)
SlidesLive Video » |
William Guss · Stephanie Milani 🔗 |
Fri 4:30 p.m. - 5:00 p.m.
|
Invited talk: Karen Liu "Deep Reinforcement Learning for Physical Human-Robot Interaction"
(
Talk
)
SlidesLive Video » Creating realistic virtual humans has traditionally been considered a research problem in Computer Animation primarily for entertainment applications. With the recent breakthrough in collaborative robots and deep reinforcement learning, accurately modeling human movements and behaviors has become a common challenge also faced by researchers in robotics and artificial intelligence. For example, mobile robots and autonomous vehicles can benefit from training in environments populated with ambulating humans and learning to avoid colliding with them. Healthcare robotics, on the other hand, need to embrace physical contacts and learn to utilize them for enabling human’s activities of daily living. An immediate concern in developing such an autonomous and powered robotic device is the safety of human users during the early development phase when the control policies are still largely suboptimal. Learning from physically simulated humans and environments presents a promising alternative which enables robots to safely make and learn from mistakes without putting real people at risk. However, deploying such policies to interact with people in the real world adds additional complexity to the already challenging sim-to-real transfer problem. In this talk, I will present our current progress on solving the problem of sim-to-real transfer with humans in the environment, actively interacting with the robots through physical contacts. We tackle the problem from two fronts: developing more relevant human models to facilitate robot learning and developing human-aware robot perception and control policies. As an example of contextualizing our research effort, we develop a mobile manipulator to put clothes on people with physical impairments, enabling them to carry out day-to-day tasks and maintain independence. |
Karen Liu 🔗 |
Fri 5:00 p.m. - 6:00 p.m.
|
Panel discussion
|
Pierre-Yves Oudeyer · Marc Bellemare · Peter Stone · Matt Botvinick · Susan Murphy · Anusha Nagabandi · Ashley Edwards · Karen Liu · Pieter Abbeel 🔗 |
Fri 6:00 p.m. - 7:00 p.m.
|
Poster session 2 ( Poster session ) link » | 🔗 |
-
|
Poster: Planning from Pixels using Inverse Dynamics Models
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: OPAL: Offline Primitive Discovery for Accelerating Offline Reinforcement Learning
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Maximum Reward Formulation In Reinforcement Learning
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Reset-Free Lifelong Learning with Skill-Space Planning
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Mirror Descent Policy Optimization
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: MaxEnt RL and Robust Control
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Learning Functionally Decomposed Hierarchies for Continuous Control Tasks with Path Planning
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Provably Efficient Policy Optimization via Thompson Sampling
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Weighted Bellman Backups for Improved Signal-to-Noise in Q-Updates
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Efficient Competitive Self-Play Policy Optimization
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Asymmetric self-play for automatic goal discovery in robotic manipulation
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Correcting Momentum in Temporal Difference Learning
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Decoupling Exploration and Exploitation in Meta-Reinforcement Learning without Sacrifices
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Diverse Exploration via InfoMax Options
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Model-Based Meta-Reinforcement Learning for Flight with Suspended Payloads
(
Poster
)
|
🔗 |
-
|
Poster: Parrot: Data-driven Behavioral Priors for Reinforcement Learning
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: C-Learning: Horizon-Aware Cumulative Accessibility Estimation
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Implicit Under-Parameterization Inhibits Data-Efficient Deep Reinforcement Learning
(
Poster
)
|
🔗 |
-
|
Poster: Data-Efficient Reinforcement Learning with Self-Predictive Representations
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Accelerating Reinforcement Learning with Learned Skill Priors
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: C-Learning: Learning to Achieve Goals via Recursive Classification
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Off-Dynamics Reinforcement Learning: Training for Transfer with Domain Classifiers
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Learning to Reach Goals via Iterated Supervised Learning
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Unified View of Inference-based Off-policy RL: Decoupling Algorithmic and Implemental Source of Performance Gaps
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Learning to Sample with Local and Global Contexts in Experience Replay Buffer
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Adversarial Environment Generation for Learning to Navigate the Web
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Reinforcement Learning for Sparse-Reward Object-Interaction Tasks in First-person Simulated 3D Environments
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: DisCo RL: Distribution-Conditioned Reinforcement Learning for General-Purpose Policies
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Discovery of Options via Meta-Gradients
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: GRAC: Self-Guided and Self-Regularized Actor-Critic
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Harnessing Distribution Ratio Estimators for Learning Agents with Quality and Diversity
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Deep Bayesian Quadrature Policy Gradient
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: PixL2R: Guiding Reinforcement Learning Using Natural Language by Mapping Pixels to Rewards
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: A Policy Gradient Method for Task-Agnostic Exploration
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Contrastive Behavioral Similarity Embeddings for Generalization in Reinforcement Learning
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Skill Transfer via Partially Amortized Hierarchical Planning
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: On Effective Parallelization of Monte Carlo Tree Search
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Mastering Atari with Discrete World Models
(
Poster
)
|
🔗 |
-
|
Poster: Average Reward Reinforcement Learning with Monotonic Policy Improvement
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Combating False Negatives in Adversarial Imitation Learning
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Evaluating Agents Without Rewards
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Learning Latent Landmarks for Generalizable Planning
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Conservative Safety Critics for Exploration
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Solving Compositional Reinforcement Learning Problems via Task Reduction
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Deep Q-Learning with Low Switching Cost
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Learning to Represent Action Values as a Hypergraph on the Action Vertices
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Addressing Distribution Shift in Online Reinforcement Learning with Offline Datasets
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: TACTO: A Simulator for Learning Control from Touch Sensing
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Safe Reinforcement Learning with Natural Language Constraints
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Shortest-Path Constrained Reinforcement Learning for Sparse Reward Tasks
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: An Examination of Preference-based Reinforcement Learning for Treatment Recommendation
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Model-based Navigation in Environments with Novel Layouts Using Abstract $n$-D Maps
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Online Safety Assurance for Deep Reinforcement Learning
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Lyapunov Barrier Policy Optimization
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Evolving Reinforcement Learning Algorithms
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Chaining Behaviors from Data with Model-Free Reinforcement Learning
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Pairwise Weights for Temporal Credit Assignment
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Causal Curiosity: RL Agents Discovering Self-supervised Experiments for Causal Representation Learning
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Understanding Learned Reward Functions
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Addressing reward bias in Adversarial Imitation Learning with neutral reward functions
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Reinforcement Learning with Bayesian Classifiers: Efficient Skill Learning from Outcome Examples
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Decoupling Representation Learning from Reinforcement Learning
(
Poster
)
|
🔗 |
-
|
Poster: Model-Based Reinforcement Learning via Latent-Space Collocation
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: A Variational Inference Perspective on Goal-Directed Behavior in Reinforcement Learning
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: SCC: an efficient deep reinforcement learning agent mastering the game of StarCraft II
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Predictive PER: Balancing Priority and Diversity towards Stable Deep Reinforcement Learning
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Latent State Models for Meta-Reinforcement Learning from Images
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Dream and Search to Control: Latent Space Planning for Continuous Control
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Explanation Augmented Feedback in Human-in-the-Loop Reinforcement Learning
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Goal-Conditioned Reinforcement Learning in the Presence of an Adversary
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Regularized Inverse Reinforcement Learning
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Domain Adversarial Reinforcement Learning
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Safety Aware Reinforcement Learning
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Sample Efficient Training in Multi-Agent AdversarialGames with Limited Teammate Communication
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Amortized Variational Deep Q Network
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Disentangled Planning and Control in Vision Based Robotics via Reward Machines
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Maximum Mutation Reinforcement Learning for Scalable Control
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Unsupervised Task Clustering for Multi-Task Reinforcement Learning
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Learning Intrinsic Symbolic Rewards in Reinforcement Learning
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Preventing Value Function Collapse in Ensemble Q-Learning by Maximizing Representation Diversity
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Action and Perception as Divergence Minimization
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Randomized Ensembled Double Q-Learning: Learning Fast Without a Model
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: D2RL: Deep Dense Architectures in Reinforcement Learning
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Benchmarking Multi-Agent Deep Reinforcement Learning Algorithms
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Discovering Diverse Multi-Agent Strategic Behavior via Reward Randomization
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: What Matters for On-Policy Deep Actor-Critic Methods? A Large-Scale Study
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Semantic State Representation for Reinforcement Learning
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Hyperparameter Auto-tuning in Self-Supervised Robotic Learning
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Targeted Query-based Action-Space Adversarial Policies on Deep Reinforcement Learning Agents
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Abstract Value Iteration for Hierarchical Deep Reinforcement Learning
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Compute- and Memory-Efficient Reinforcement Learning with Latent Experience Replay
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Emergent Road Rules In Multi-Agent Driving Environments
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: An Algorithmic Causal Model of Credit Assignment in Reinforcement Learning
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Learning to Weight Imperfect Demonstrations
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Structure and randomness in planning and reinforcement learning
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Parameter-based Value Functions
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Influence-aware Memory for Deep Reinforcement Learning in POMDPs
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Modular Training, Integrated Planning Deep Reinforcement Learning for Mobile Robot Navigation
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: How to make Deep RL work in Practice
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Super-Human Performance in Gran Turismo Sport Using Deep Reinforcement Learning
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Which Mutual-Information Representation Learning Objectives are Sufficient for Control?
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Curriculum Learning through Distilled Discriminators
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Self-Supervised Policy Adaptation during Deployment
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Trust, but verify: model-based exploration in sparse reward environments
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Optimizing Traffic Bottleneck Throughput using Cooperative, Decentralized Autonomous Vehicles
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Tonic: A Deep Reinforcement Learning Library for Fast Prototyping and Benchmarking
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Revisiting Rainbow: Promoting more insightful and inclusive deep reinforcement learning research
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Reinforcement Learning with Latent Flow
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Autoregressive Dynamics Models for Offline Policy Evaluation and Optimization
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: AWAC: Accelerating Online Reinforcement Learning With Offline Datasets
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Inter-Level Cooperation in Hierarchical Reinforcement Learning
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Towards Effective Context for Meta-Reinforcement Learning: an Approach based on Contrastive Learning
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Multi-Agent Option Critic Architecture
(
Poster
)
|
🔗 |
-
|
Poster: Measuring Visual Generalization in Continuous Control from Pixels
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Policy Learning Using Weak Supervision
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments
(
Poster
)
|
🔗 |
-
|
Poster: Unsupervised Domain Adaptation for Visual Navigation
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Learning Markov State Abstractions for Deep Reinforcement Learning
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Value Generalization among Policies: Improving Value Function with Policy Representation
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Energy-based Surprise Minimization for Multi-Agent Value Factorization
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Backtesting Optimal Trade Execution Policies in Agent-Based Market Simulator
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Successor Landmarks for Efficient Exploration and Long-Horizon Navigation
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Multi-task Reinforcement Learning with a Planning Quasi-Metric
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: R-LAtte: Visual Control via Deep Reinforcement Learning with Attention Network
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Quantifying Differences in Reward Functions
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: DERAIL: Diagnostic Environments for Reward And Imitation Learning
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Exploring Zero-Shot Emergent Communication in Embodied Multi-Agent Populations
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Unlocking the Potential of Deep Counterfactual Value Networks
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: FactoredRL: Leveraging Factored Graphs for Deep Reinforcement Learning
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Reusability and Transferability of Macro Actions for Reinforcement Learning
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Interactive Visualization for Debugging RL
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: A Deep Value-based Policy Search Approach for Real-world Vehicle Repositioning on Mobility-on-Demand Platforms
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: FinRL: A Deep Reinforcement Learning Library for Automated Stock Trading in Quantitative Finance
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Visual Imitation with Reinforcement Learning using Recurrent Siamese Networks
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Learning Accurate Long-term Dynamics for Model-based Reinforcement Learning
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: XLVIN: eXecuted Latent Value Iteration Nets
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Beyond Exponentially Discounted Sum: Automatic Learning of Return Function
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: XT2: Training an X-to-Text Typing Interface with Online Learning from Implicit Feedback
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Greedy Multi-Step Off-Policy Reinforcement Learning
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Variational Empowerment as Representation Learning for Goal-Based Reinforcement Learning
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Robust Domain Randomised Reinforcement Learning through Peer-to-Peer Distillation
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: ReaPER: Improving Sample Efficiency in Model-Based Latent Imagination
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Model-Based Reinforcement Learning: A Compressed Survey
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: BeBold: Exploration Beyond the Boundary of Explored Regions
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Model-Based Visual Planning with Self-Supervised Functional Distances
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Optimizing Memory Placement using Evolutionary Graph Reinforcement Learning
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Utilizing Skipped Frames in Action Repeats via Pseudo-Actions
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Bringing order into Actor-Critic Algorithms usingStackelberg Games
(
Poster
)
|
🔗 |
-
|
Poster: Continual Model-Based Reinforcement Learning withHypernetworks
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Online Hyper-parameter Tuning in Off-policy Learning via Evolutionary Strategies
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: Policy Guided Planning in Learned Latent Space
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: PettingZoo: Gym for Multi-Agent Reinforcement Learning
(
Poster
)
SlidesLive Video » |
🔗 |
-
|
Poster: DREAM: Deep Regret minimization with Advantage baselines and Model-free learning
(
Poster
)
SlidesLive Video » |
🔗 |
Author Information
Pieter Abbeel (UC Berkeley & Covariant)
Pieter Abbeel is Professor and Director of the Robot Learning Lab at UC Berkeley [2008- ], Co-Director of the Berkeley AI Research (BAIR) Lab, Co-Founder of covariant.ai [2017- ], Co-Founder of Gradescope [2014- ], Advisor to OpenAI, Founding Faculty Partner AI@TheHouse venture fund, Advisor to many AI/Robotics start-ups. He works in machine learning and robotics. In particular his research focuses on making robots learn from people (apprenticeship learning), how to make robots learn through their own trial and error (reinforcement learning), and how to speed up skill acquisition through learning-to-learn (meta-learning). His robots have learned advanced helicopter aerobatics, knot-tying, basic assembly, organizing laundry, locomotion, and vision-based robotic manipulation. He has won numerous awards, including best paper awards at ICML, NIPS and ICRA, early career awards from NSF, Darpa, ONR, AFOSR, Sloan, TR35, IEEE, and the Presidential Early Career Award for Scientists and Engineers (PECASE). Pieter's work is frequently featured in the popular press, including New York Times, BBC, Bloomberg, Wall Street Journal, Wired, Forbes, Tech Review, NPR.
Chelsea Finn (Stanford)
Joelle Pineau (McGill University)
Joelle Pineau is an Associate Professor and William Dawson Scholar at McGill University where she co-directs the Reasoning and Learning Lab. She also leads the Facebook AI Research lab in Montreal, Canada. She holds a BASc in Engineering from the University of Waterloo, and an MSc and PhD in Robotics from Carnegie Mellon University. Dr. Pineau's research focuses on developing new models and algorithms for planning and learning in complex partially-observable domains. She also works on applying these algorithms to complex problems in robotics, health care, games and conversational agents. She serves on the editorial board of the Journal of Artificial Intelligence Research and the Journal of Machine Learning Research and is currently President of the International Machine Learning Society. She is a recipient of NSERC's E.W.R. Steacie Memorial Fellowship (2018), a Fellow of the Association for the Advancement of Artificial Intelligence (AAAI), a Senior Fellow of the Canadian Institute for Advanced Research (CIFAR) and in 2016 was named a member of the College of New Scholars, Artists and Scientists by the Royal Society of Canada.
David Silver (DeepMind)
Satinder Singh (University of Michigan)
Coline Devin (DeepMind)
Misha Laskin (UC Berkeley)
Kimin Lee (UC Berkeley)
Janarthanan Rajendran (University of Michigan)
Vivek Veeriah (University of Michigan)
More from the Same Authors
-
2021 : B-Pref: Benchmarking Preference-Based Reinforcement Learning »
Kimin Lee · Laura Smith · Anca Dragan · Pieter Abbeel -
2021 Spotlight: Proper Value Equivalence »
Christopher Grimm · Andre Barreto · Greg Farquhar · David Silver · Satinder Singh -
2021 Spotlight: Behavior From the Void: Unsupervised Active Pre-Training »
Hao Liu · Pieter Abbeel -
2021 Spotlight: Efficiently Identifying Task Groupings for Multi-Task Learning »
Chris Fifty · Ehsan Amid · Zhe Zhao · Tianhe Yu · Rohan Anil · Chelsea Finn -
2021 Spotlight: Online and Offline Reinforcement Learning by Planning with a Learned Model »
Julian Schrittwieser · Thomas Hubert · Amol Mandhane · Mohammadamin Barekatain · Ioannis Antonoglou · David Silver -
2021 : An Empirical Investigation of Representation Learning for Imitation »
Cynthia Chen · Sam Toyer · Cody Wild · Scott Emmons · Ian Fischer · Kuang-Huei Lee · Neel Alex · Steven Wang · Ping Luo · Stuart Russell · Pieter Abbeel · Rohin Shah -
2021 : URLB: Unsupervised Reinforcement Learning Benchmark »
Misha Laskin · Denis Yarats · Hao Liu · Kimin Lee · Albert Zhan · Kevin Lu · Catherine Cang · Lerrel Pinto · Pieter Abbeel -
2021 : MESA: Offline Meta-RL for Safe Adaptation and Fault Tolerance »
Michael Luo · Ashwin Balakrishna · Brijen Thananjeyan · Suraj Nair · Julian Ibarz · Jie Tan · Chelsea Finn · Ion Stoica · Ken Goldberg -
2021 : Bridge Data: Boosting Generalization of Robotic Skills with Cross-Domain Datasets »
Frederik Ebert · Yanlai Yang · Karl Schmeckpeper · Bernadette Bucher · Kostas Daniilidis · Chelsea Finn · Sergey Levine -
2021 : Lifelong Robotic Reinforcement Learning by Retaining Experiences »
Annie Xie · Chelsea Finn -
2021 : Correct-N-Contrast: A Contrastive Approach for Improving Robustness to Spurious Correlations »
Michael Zhang · Nimit Sohoni · Hongyang Zhang · Chelsea Finn · Christopher Ré -
2021 : Extending the WILDS Benchmark for Unsupervised Adaptation »
Shiori Sagawa · Pang Wei Koh · Tony Lee · Irena Gao · Sang Michael Xie · Kendrick Shen · Ananya Kumar · Weihua Hu · Michihiro Yasunaga · Henrik Marklund · Sara Beery · Ian Stavness · Jure Leskovec · Kate Saenko · Tatsunori Hashimoto · Sergey Levine · Chelsea Finn · Percy Liang -
2021 : Test Time Robustification of Deep Models via Adaptation and Augmentation »
Marvin Zhang · Sergey Levine · Chelsea Finn -
2021 : Temporal-Difference Value Estimation via Uncertainty-Guided Soft Updates »
Litian Liang · Yaosheng Xu · Stephen McAleer · Dailin Hu · Alexander Ihler · Pieter Abbeel · Roy Fox -
2021 : Target Entropy Annealing for Discrete Soft Actor-Critic »
Yaosheng Xu · Dailin Hu · Litian Liang · Stephen McAleer · Pieter Abbeel · Roy Fox -
2021 : The Reflective Explorer: Online Meta-Exploration from Offline Data in Realistic Robotic Tasks »
Rafael Rafailov · · Tianhe Yu · Avi Singh · Mariano Phielipp · Chelsea Finn -
2021 : Count-Based Temperature Scheduling for Maximum Entropy Reinforcement Learning »
Dailin Hu · Pieter Abbeel · Roy Fox -
2021 : Data Sharing without Rewards in Multi-Task Offline Reinforcement Learning »
Tianhe Yu · Aviral Kumar · Yevgen Chebotar · Chelsea Finn · Sergey Levine · Karol Hausman -
2021 : Reward Uncertainty for Exploration in Preference-based Reinforcement Learning »
Xinran Liang · Katherine Shu · Kimin Lee · Pieter Abbeel -
2021 : CIC: Contrastive Intrinsic Control for Unsupervised Skill Discovery »
Misha Laskin · Hao Liu · Xue Bin Peng · Denis Yarats · Aravind Rajeswaran · Pieter Abbeel -
2021 : SURF: Semi-supervised Reward Learning with Data Augmentation for Feedback-efficient Preference-based Reinforcement Learning »
Jongjin Park · Younggyo Seo · Jinwoo Shin · Honglak Lee · Pieter Abbeel · Kimin Lee -
2021 : GrASP: Gradient-Based Affordance Selection for Planning »
Vivek Veeriah · Zeyu Zheng · Richard L Lewis · Satinder Singh -
2021 : Block Contextual MDPs for Continual Learning »
Shagun Sodhani · Franziska Meier · Joelle Pineau · Amy Zhang -
2021 : A Framework for Efficient Robotic Manipulation »
Albert Zhan · Ruihan Zhao · Lerrel Pinto · Pieter Abbeel · Misha Laskin -
2021 : URLB: Unsupervised Reinforcement Learning Benchmark »
Misha Laskin · Denis Yarats · Hao Liu · Kimin Lee · Albert Zhan · Kevin Lu · Catherine Cang · Lerrel Pinto · Pieter Abbeel -
2021 : Skill Preferences: Learning to Extract and Execute Robotic Skills from Human Feedback »
Xiaofei Wang · Kimin Lee · Kourosh Hakhamaneshi · Pieter Abbeel · Misha Laskin -
2021 : CoMPS: Continual Meta Policy Search »
Glen Berseth · Zhiwei Zhang · Grace Zhang · Chelsea Finn · Sergey Levine -
2021 : Behavioral Priors and Dynamics Models: Improving Performance and Domain Transfer in Offline RL »
Catherine Cang · Aravind Rajeswaran · Pieter Abbeel · Misha Laskin -
2021 : Hierarchical Few-Shot Imitation with Skill Transition Models »
Kourosh Hakhamaneshi · Ruihan Zhao · Albert Zhan · Pieter Abbeel · Misha Laskin -
2021 : Discriminator Augmented Model-Based Reinforcement Learning »
Allan Zhou · Archit Sharma · Chelsea Finn -
2021 : Curiosity with Chelsea Finn, Celeste Kidd, Timothy Verstynen »
Celeste Kidd · Chelsea Finn · Timothy Verstynen · Johnathan Flowers -
2021 : Pretraining for Language-Conditioned Imitation with Transformers »
Aaron Putterman · Kevin Lu · Igor Mordatch · Pieter Abbeel -
2021 : Example-Based Offline Reinforcement Learning without Rewards »
Kyle Hatch · Tianhe Yu · Rafael Rafailov · Chelsea Finn -
2021 : The Reflective Explorer: Online Meta-Exploration from Offline Data in Realistic Robotic Tasks »
Rafael Rafailov · · Tianhe Yu · Avi Singh · Mariano Phielipp · Chelsea Finn -
2022 Poster: LAPO: Latent-Variable Advantage-Weighted Policy Optimization for Offline Reinforcement Learning »
Xi Chen · Ali Ghadirzadeh · Tianhe Yu · Jianhao Wang · Alex Yuan Gao · Wenzhe Li · Liang Bin · Chelsea Finn · Chongjie Zhang -
2022 : You Only Live Once: Single-Life Reinforcement Learning »
Annie Chen · Archit Sharma · Sergey Levine · Chelsea Finn -
2022 : Quantifying Uncertainty in Foundation Models via Ensembles »
Meiqi Sun · Wilson Yan · Pieter Abbeel · Igor Mordatch -
2022 : What Makes Certain Pre-Trained Visual Representations Better for Robotic Learning? »
Kyle Hsu · Tyler Lum · Ruohan Gao · Shixiang (Shane) Gu · Jiajun Wu · Chelsea Finn -
2022 : A Control-Centric Benchmark for Video Prediction »
Stephen Tian · Chelsea Finn · Jiajun Wu -
2022 : Pre-Training for Robots: Leveraging Diverse Multitask Data via Offline Reinforcement Learning »
Aviral Kumar · Anikait Singh · Frederik Ebert · Yanlai Yang · Chelsea Finn · Sergey Levine -
2022 : Multi-Environment Pretraining Enables Transfer to Action Limited Datasets »
David Venuto · Mengjiao (Sherry) Yang · Pieter Abbeel · Doina Precup · Igor Mordatch · Ofir Nachum -
2022 : Train Offline, Test Online: A Real Robot Learning Benchmark »
Gaoyue Zhou · Victoria Dean · Mohan Kumar Srirama · Aravind Rajeswaran · Jyothish Pari · Kyle Hatch · Aryan Jain · Tianhe Yu · Pieter Abbeel · Lerrel Pinto · Chelsea Finn · Abhinav Gupta -
2022 : Bitrate-Constrained DRO: Beyond Worst Case Robustness To Unknown Group Shifts »
Amrith Setlur · Don Dennis · Benjamin Eysenbach · Aditi Raghunathan · Chelsea Finn · Virginia Smith · Sergey Levine -
2022 : Train Offline, Test Online: A Real Robot Learning Benchmark »
Gaoyue Zhou · Victoria Dean · Mohan Kumar Srirama · Aravind Rajeswaran · Jyothish Pari · Kyle Hatch · Aryan Jain · Tianhe Yu · Pieter Abbeel · Lerrel Pinto · Chelsea Finn · Abhinav Gupta -
2022 : Multi-Domain Long-Tailed Learning by Augmenting Disentangled Representations »
Huaxiu Yao · Xinyu Yang · Allan Zhou · Chelsea Finn -
2022 : Surgical Fine-Tuning Improves Adaptation to Distribution Shifts »
Yoonho Lee · Annie Chen · Fahim Tajwar · Ananya Kumar · Huaxiu Yao · Percy Liang · Chelsea Finn -
2022 : Contrastive Example-Based Control »
Kyle Hatch · Sarthak J Shetty · Benjamin Eysenbach · Tianhe Yu · Rafael Rafailov · Russ Salakhutdinov · Sergey Levine · Chelsea Finn -
2022 : Train Offline, Test Online: A Real Robot Learning Benchmark »
Gaoyue Zhou · Victoria Dean · Mohan Kumar Srirama · Aravind Rajeswaran · Jyothish Pari · Kyle Hatch · Aryan Jain · Tianhe Yu · Pieter Abbeel · Lerrel Pinto · Chelsea Finn · Abhinav Gupta -
2022 : Relaxing the Kolmogorov Structure Function for Realistic Computational Constraints »
Yoonho Lee · Chelsea Finn · Stefano Ermon -
2022 : Recommendation for New Drugs with Limited Prescription Data »
Zhenbang Wu · Huaxiu Yao · Zhe Su · David Liebovitz · Lucas Glass · James Zou · Chelsea Finn · Jimeng Sun -
2022 : CLUTR: Curriculum Learning via Unsupervised Task Representation Learning »
Abdus Salam Azad · Izzeddin Gur · Aleksandra Faust · Pieter Abbeel · Ion Stoica -
2022 : What Makes Certain Pre-Trained Visual Representations Better for Robotic Learning? »
Kyle Hsu · Tyler Lum · Ruohan Gao · Shixiang (Shane) Gu · Jiajun Wu · Chelsea Finn -
2022 : Train Offline, Test Online: A Real Robot Learning Benchmark »
Gaoyue Zhou · Victoria Dean · Mohan Kumar Srirama · Aravind Rajeswaran · Jyothish Pari · Kyle Hatch · Aryan Jain · Tianhe Yu · Pieter Abbeel · Lerrel Pinto · Chelsea Finn · Abhinav Gupta -
2022 : Replay Buffer With Local Forgetting for Adaptive Deep Model-Based Reinforcement Learning »
Ali Rahimi-Kalahroudi · Janarthanan Rajendran · Ida Momennejad · Harm Van Seijen · Sarath Chandar -
2022 : Pre-Training for Robots: Leveraging Diverse Multitask Data via Offline Reinforcement Learning »
Anikait Singh · Aviral Kumar · Frederik Ebert · Yanlai Yang · Chelsea Finn · Sergey Levine -
2022 : Fine-tuning Offline Policies with Optimistic Action Selection »
Max Sobol Mark · Ali Ghadirzadeh · Xi Chen · Chelsea Finn -
2022 : Policy Architectures for Compositional Generalization in Control »
Allan Zhou · Vikash Kumar · Chelsea Finn · Aravind Rajeswaran -
2022 : Contrastive Example-Based Control »
Kyle Hatch · Sarthak J Shetty · Benjamin Eysenbach · Tianhe Yu · Rafael Rafailov · Russ Salakhutdinov · Sergey Levine · Chelsea Finn -
2022 : Giving Robots a Hand: Broadening Generalization via Hand-Centric Human Video Demonstrations »
Moo J Kim · Jiajun Wu · Chelsea Finn -
2022 : Surgical Fine-Tuning Improves Adaptation to Distribution Shifts »
Yoonho Lee · Annie Chen · Fahim Tajwar · Ananya Kumar · Huaxiu Yao · Percy Liang · Chelsea Finn -
2022 : Train Offline, Test Online: A Real Robot Learning Benchmark »
Gaoyue Zhou · Victoria Dean · Mohan Kumar Srirama · Aravind Rajeswaran · Jyothish Pari · Kyle Hatch · Aryan Jain · Tianhe Yu · Pieter Abbeel · Lerrel Pinto · Chelsea Finn · Abhinav Gupta -
2023 Poster: Language Quantized AutoEncoders for Data Efficient Text-Image Alignment »
Hao Liu · Wilson Yan · Pieter Abbeel -
2023 Poster: Permutation Equivariant Neural Functionals »
Allan Zhou · Kaien Yang · Kaylee Burns · Adriano Cardace · Yiding Jiang · Samuel Sokota · J. Zico Kolter · Chelsea Finn -
2023 Poster: In-Context Decision-Making from Supervised Pretraining »
Jonathan N Lee · Annie Xie · Aldo Pacchiano · Yash Chandak · Chelsea Finn · Ofir Nachum · Emma Brunskill -
2023 Poster: Learning Universal Policies via Text-Guided Video Generation »
Yilun Du · Mengjiao (Sherry) Yang · Bo Dai · Hanjun Dai · Ofir Nachum · Josh Tenenbaum · Dale Schuurmans · Pieter Abbeel -
2023 Poster: Addressing Out-Of-Distribution Joint Actions in Offline Multi-Agent RL via Alternating Stationary Distribution Correction Estimation »
Daiki E Matsunaga · Jongmin Lee · Jaeseok Yoon · Stefanos Leonardos · Pieter Abbeel · Kee-Eung Kim -
2023 Poster: Disentanglement via Latent Quantization »
Kyle Hsu · William Dorrell · James Whittington · Chelsea Finn · Jiajun Wu -
2023 Poster: Blockwise Parallel Transformer for Large Models »
Hao Liu · Pieter Abbeel -
2023 Poster: Neural Functional Transformers »
Allan Zhou · Kaien Yang · Yiding Jiang · Kaylee Burns · Winnie Xu · Samuel Sokota · J. Zico Kolter · Chelsea Finn -
2023 Poster: Video Prediction Models as Rewards for Reinforcement Learning »
Alejandro Escontrela · Ademi Adeniji · Wilson Yan · Ajay Jain · Xue Bin Peng · Ken Goldberg · Youngwoon Lee · Danijar Hafner · Pieter Abbeel -
2023 Poster: Direct Preference Optimization: Your Language Model is Secretly a Reward Model »
Rafael Rafailov · Archit Sharma · Eric Mitchell · Christopher D Manning · Stefano Ermon · Chelsea Finn -
2023 Poster: Cal-QL: Calibrated Offline RL Pre-Training for Efficient Online Fine-Tuning »
Mitsuhiko Nakamoto · Yuexiang Zhai · Anikait Singh · Max Sobol Mark · Yi Ma · Chelsea Finn · Aviral Kumar · Sergey Levine -
2023 Poster: RoboCLIP: One Demonstration is Enough to Learn Robot Policies »
Sumedh Sontakke · Séb Arnold · Jesse Zhang · Karl Pertsch · Erdem Bıyık · Dorsa Sadigh · Chelsea Finn · Laurent Itti -
2023 Poster: Accelerating Reinforcement Learning with Value-Conditional State Entropy Exploration »
Dongyoung Kim · Jinwoo Shin · Pieter Abbeel · Younggyo Seo -
2023 Poster: Reinforcement Learning for Fine-tuning Text-to-Image Diffusion Models »
Ying Fan · Olivia Watkins · Yuqing Du · Hao Liu · Moonkyung Ryu · Craig Boutilier · Pieter Abbeel · Mohammad Ghavamzadeh · Kangwook Lee · Kimin Lee -
2023 Poster: Where are we in the search for an Artificial Visual Cortex for Embodied Intelligence? »
Arjun Majumdar · Karmesh Yadav · Sergio Arnaud · Jason Yecheng Ma · Claire Chen · Sneha Silwal · Aryan Jain · Vincent-Pierre Berges · Tingfan Wu · Jay Vakil · Pieter Abbeel · Jitendra Malik · Dhruv Batra · Yixin Lin · Oleksandr Maksymets · Aravind Rajeswaran · Franziska Meier -
2023 Oral: Direct Preference Optimization: Your Language Model is Secretly a Reward Model »
Rafael Rafailov · Archit Sharma · Eric Mitchell · Christopher D Manning · Stefano Ermon · Chelsea Finn -
2023 Competition: Train Offline, Test Online: A Democratized Robotics Benchmark »
Victoria Dean · Gaoyue Zhou · Mohan Kumar Srirama · Sudeep Dasari · Esther Brown · Marion Lepert · Paul Ruvolo · Chelsea Finn · Lerrel Pinto · Abhinav Gupta -
2022 : PatchBlender: A Motion Prior for Video Transformers »
Gabriele Prato · Yale Song · Janarthanan Rajendran · R Devon Hjelm · Neel Joshi · Sarath Chandar -
2022 : Train Offline, Test Online: A Real Robot Learning Benchmark »
Gaoyue Zhou · Victoria Dean · Mohan Kumar Srirama · Aravind Rajeswaran · Jyothish Pari · Kyle Hatch · Aryan Jain · Tianhe Yu · Pieter Abbeel · Lerrel Pinto · Chelsea Finn · Abhinav Gupta -
2022 : Train Offline, Test Online: A Real Robot Learning Benchmark »
Gaoyue Zhou · Victoria Dean · Mohan Kumar Srirama · Aravind Rajeswaran · Jyothish Pari · Kyle Hatch · Aryan Jain · Tianhe Yu · Pieter Abbeel · Lerrel Pinto · Chelsea Finn · Abhinav Gupta -
2022 Workshop: Workshop on Distribution Shifts: Connecting Methods and Applications »
Chelsea Finn · Fanny Yang · Hongseok Namkoong · Masashi Sugiyama · Jacob Eisenstein · Jonas Peters · Rebecca Roelofs · Shiori Sagawa · Pang Wei Koh · Yoonho Lee -
2022 Poster: On the Effectiveness of Fine-tuning Versus Meta-reinforcement Learning »
Mandi Zhao · Pieter Abbeel · Stephen James -
2022 Poster: MEMO: Test Time Robustness via Adaptation and Augmentation »
Marvin Zhang · Sergey Levine · Chelsea Finn -
2022 Poster: Learning Options via Compression »
Yiding Jiang · Evan Liu · Benjamin Eysenbach · J. Zico Kolter · Chelsea Finn -
2022 Poster: Chain of Thought Imitation with Procedure Cloning »
Mengjiao (Sherry) Yang · Dale Schuurmans · Pieter Abbeel · Ofir Nachum -
2022 Poster: Masked Autoencoding for Scalable and Generalizable Decision Making »
Fangchen Liu · Hao Liu · Aditya Grover · Pieter Abbeel -
2022 Poster: You Only Live Once: Single-Life Reinforcement Learning »
Annie Chen · Archit Sharma · Sergey Levine · Chelsea Finn -
2022 Poster: Wild-Time: A Benchmark of in-the-Wild Distribution Shift over Time »
Huaxiu Yao · Caroline Choi · Bochuan Cao · Yoonho Lee · Pang Wei Koh · Chelsea Finn -
2022 Poster: Unsupervised Reinforcement Learning with Contrastive Intrinsic Control »
Michael Laskin · Hao Liu · Xue Bin Peng · Denis Yarats · Aravind Rajeswaran · Pieter Abbeel -
2022 Poster: When to Ask for Help: Proactive Interventions in Autonomous Reinforcement Learning »
Annie Xie · Fahim Tajwar · Archit Sharma · Chelsea Finn -
2022 Poster: Spending Thinking Time Wisely: Accelerating MCTS with Virtual Expansions »
Weirui Ye · Pieter Abbeel · Yang Gao -
2022 Poster: Deep Hierarchical Planning from Pixels »
Danijar Hafner · Kuang-Huei Lee · Ian Fischer · Pieter Abbeel -
2022 Poster: C-Mixup: Improving Generalization in Regression »
Huaxiu Yao · Yiping Wang · Linjun Zhang · James Zou · Chelsea Finn -
2022 Poster: Giving Feedback on Interactive Student Programs with Meta-Exploration »
Evan Liu · Moritz Stephan · Allen Nie · Chris Piech · Emma Brunskill · Chelsea Finn -
2021 : Lifelong Robotic Reinforcement Learning by Retaining Experiences »
Annie Xie · Chelsea Finn -
2021 : Playful Interactions for Representation Learning »
Sarah Young · Pieter Abbeel · Lerrel Pinto -
2021 : What makes for an interesting RL problem? »
Joelle Pineau -
2021 : Discussion: Chelsea Finn, Masashi Sugiyama »
Chelsea Finn · Masashi Sugiyama -
2021 : Robustness through the Lens of Invariance »
Chelsea Finn -
2021 Workshop: Deep Reinforcement Learning »
Pieter Abbeel · Chelsea Finn · David Silver · Matthew Taylor · Martha White · Srijita Das · Yuqing Du · Andrew Patterson · Manan Tomar · Olivia Watkins -
2021 : Bootstrapped Meta-Learning »
Sebastian Flennerhag · Yannick Schroecker · Tom Zahavy · Hado van Hasselt · David Silver · Satinder Singh -
2021 Poster: Visual Adversarial Imitation Learning using Variational Models »
Rafael Rafailov · Tianhe Yu · Aravind Rajeswaran · Chelsea Finn -
2021 Poster: Hindsight Task Relabelling: Experience Replay for Sparse Reward Meta-RL »
Charles Packer · Pieter Abbeel · Joseph Gonzalez -
2021 Poster: Improving Transferability of Representations via Augmentation-Aware Self-Supervision »
Hankook Lee · Kibok Lee · Kimin Lee · Honglak Lee · Jinwoo Shin -
2021 Poster: Multi-Objective SPIBB: Seldonian Offline Policy Improvement with Safety Constraints in Finite MDPs »
harsh satija · Philip Thomas · Joelle Pineau · Romain Laroche -
2021 Poster: Improving Computational Efficiency in Visual Reinforcement Learning via Stored Embeddings »
Lili Chen · Kimin Lee · Aravind Srinivas · Pieter Abbeel -
2021 Poster: Efficiently Identifying Task Groupings for Multi-Task Learning »
Chris Fifty · Ehsan Amid · Zhe Zhao · Tianhe Yu · Rohan Anil · Chelsea Finn -
2021 Poster: COMBO: Conservative Offline Model-Based Policy Optimization »
Tianhe Yu · Aviral Kumar · Rafael Rafailov · Aravind Rajeswaran · Sergey Levine · Chelsea Finn -
2021 : BASALT: A MineRL Competition on Solving Human-Judged Task + Q&A »
Rohin Shah · Cody Wild · Steven Wang · Neel Alex · Brandon Houghton · William Guss · Sharada Mohanty · Stephanie Milani · Nicholay Topin · Pieter Abbeel · Stuart Russell · Anca Dragan -
2021 Poster: Decision Transformer: Reinforcement Learning via Sequence Modeling »
Lili Chen · Kevin Lu · Aravind Rajeswaran · Kimin Lee · Aditya Grover · Misha Laskin · Pieter Abbeel · Aravind Srinivas · Igor Mordatch -
2021 Poster: Proper Value Equivalence »
Christopher Grimm · Andre Barreto · Greg Farquhar · David Silver · Satinder Singh -
2021 Poster: Mastering Atari Games with Limited Data »
Weirui Ye · Shaohuai Liu · Thanard Kurutach · Pieter Abbeel · Yang Gao -
2021 Poster: Information is Power: Intrinsic Control via Information Capture »
Nicholas Rhinehart · Jenny Wang · Glen Berseth · John Co-Reyes · Danijar Hafner · Chelsea Finn · Sergey Levine -
2021 Poster: Conservative Data Sharing for Multi-Task Offline Reinforcement Learning »
Tianhe Yu · Aviral Kumar · Yevgen Chebotar · Karol Hausman · Sergey Levine · Chelsea Finn -
2021 Poster: Meta-learning with an Adaptive Task Scheduler »
Huaxiu Yao · Yu Wang · Ying Wei · Peilin Zhao · Mehrdad Mahdavi · Defu Lian · Chelsea Finn -
2021 Poster: Discovery of Options via Meta-Learned Subgoals »
Vivek Veeriah · Tom Zahavy · Matteo Hessel · Zhongwen Xu · Junhyuk Oh · Iurii Kemaev · Hado van Hasselt · David Silver · Satinder Singh -
2021 Poster: Reinforcement Learning with Latent Flow »
Wenling Shang · Xiaofei Wang · Aravind Srinivas · Aravind Rajeswaran · Yang Gao · Pieter Abbeel · Misha Laskin -
2021 Poster: Learning State Representations from Random Deep Action-conditional Predictions »
Zeyu Zheng · Vivek Veeriah · Risto Vuorio · Richard L Lewis · Satinder Singh -
2021 Poster: Noether Networks: meta-learning useful conserved quantities »
Ferran Alet · Dylan Doblar · Allan Zhou · Josh Tenenbaum · Kenji Kawaguchi · Chelsea Finn -
2021 Poster: Behavior From the Void: Unsupervised Active Pre-Training »
Hao Liu · Pieter Abbeel -
2021 Poster: Self-Consistent Models and Values »
Greg Farquhar · Kate Baumli · Zita Marinho · Angelos Filos · Matteo Hessel · Hado van Hasselt · David Silver -
2021 Poster: Teachable Reinforcement Learning via Advice Distillation »
Olivia Watkins · Abhishek Gupta · Trevor Darrell · Pieter Abbeel · Jacob Andreas -
2021 Poster: Differentiable Annealed Importance Sampling and the Perils of Gradient Noise »
Guodong Zhang · Kyle Hsu · Jianing Li · Chelsea Finn · Roger Grosse -
2021 Poster: Autonomous Reinforcement Learning via Subgoal Curricula »
Archit Sharma · Abhishek Gupta · Sergey Levine · Karol Hausman · Chelsea Finn -
2021 Poster: Adaptive Risk Minimization: Learning to Adapt to Domain Shift »
Marvin Zhang · Henrik Marklund · Nikita Dhawan · Abhishek Gupta · Sergey Levine · Chelsea Finn -
2021 Poster: Online and Offline Reinforcement Learning by Planning with a Learned Model »
Julian Schrittwieser · Thomas Hubert · Amol Mandhane · Mohammadamin Barekatain · Ioannis Antonoglou · David Silver -
2020 : Panel Discussion & Closing »
Yejin Choi · Alexei Efros · Chelsea Finn · Kristen Grauman · Quoc V Le · Yann LeCun · Ruslan Salakhutdinov · Eric Xing -
2020 : QA: Chelsea Finn »
Chelsea Finn -
2020 : Mini-panel discussion 3 - Prioritizing Real World RL Challenges »
Chelsea Finn · Thomas Dietterich · Angela Schoellig · Anca Dragan · Anusha Nagabandi · Doina Precup -
2020 : Invited Talk: Chelsea Finn »
Chelsea Finn -
2020 : Keynote: Chelsea Finn »
Chelsea Finn -
2020 : Panel discussion »
Pierre-Yves Oudeyer · Marc Bellemare · Peter Stone · Matt Botvinick · Susan Murphy · Anusha Nagabandi · Ashley Edwards · Karen Liu · Pieter Abbeel -
2020 : Contributed Talk: Reset-Free Lifelong Learning with Skill-Space Planning »
Kevin Lu · Aditya Grover · Pieter Abbeel · Igor Mordatch -
2020 : Invited talk - Underfitting and Uncertainty in Self-Supervised Predictive Models »
Chelsea Finn -
2020 : Joelle Pineau - Can pre-registration lead to better reproducibility in ML research? »
Joelle Pineau -
2020 Workshop: ML Retrospectives, Surveys & Meta-Analyses (ML-RSA) »
Chhavi Yadav · Prabhu Pradhan · Jesse Dodge · Mayoore Jaiswal · Peter Henderson · Abhishek Gupta · Ryan Lowe · Jessica Forde · Joelle Pineau -
2020 Poster: Weakly-Supervised Reinforcement Learning for Controllable Behavior »
Lisa Lee · Benjamin Eysenbach · Russ Salakhutdinov · Shixiang (Shane) Gu · Chelsea Finn -
2020 Poster: Denoising Diffusion Probabilistic Models »
Jonathan Ho · Ajay Jain · Pieter Abbeel -
2020 Poster: Adversarial Soft Advantage Fitting: Imitation Learning without Policy Optimization »
Paul Barde · Julien Roy · Wonseok Jeon · Joelle Pineau · Chris Pal · Derek Nowrouzezahrai -
2020 Poster: Automatic Curriculum Learning through Value Disagreement »
Yunzhi Zhang · Pieter Abbeel · Lerrel Pinto -
2020 Poster: Continual Learning of Control Primitives : Skill Discovery via Reset-Games »
Kelvin Xu · Siddharth Verma · Chelsea Finn · Sergey Levine -
2020 Poster: Meta-Learning Requires Meta-Augmentation »
Janarthanan Rajendran · Alexander Irpan · Eric Jang -
2020 Spotlight: Adversarial Soft Advantage Fitting: Imitation Learning without Policy Optimization »
Paul Barde · Julien Roy · Wonseok Jeon · Joelle Pineau · Chris Pal · Derek Nowrouzezahrai -
2020 Poster: Gradient Surgery for Multi-Task Learning »
Tianhe Yu · Saurabh Kumar · Abhishek Gupta · Sergey Levine · Karol Hausman · Chelsea Finn -
2020 Poster: AvE: Assistance via Empowerment »
Yuqing Du · Stas Tiomkin · Emre Kiciman · Daniel Polani · Pieter Abbeel · Anca Dragan -
2020 Poster: Continuous Meta-Learning without Tasks »
James Harrison · Apoorva Sharma · Chelsea Finn · Marco Pavone -
2020 Poster: Reinforcement Learning with Augmented Data »
Misha Laskin · Kimin Lee · Adam Stooke · Lerrel Pinto · Pieter Abbeel · Aravind Srinivas -
2020 Poster: Generalized Hindsight for Reinforcement Learning »
Alexander Li · Lerrel Pinto · Pieter Abbeel -
2020 Poster: Trajectory-wise Multiple Choice Learning for Dynamics Generalization in Reinforcement Learning »
Younggyo Seo · Kimin Lee · Ignasi Clavera Gilaberte · Thanard Kurutach · Jinwoo Shin · Pieter Abbeel -
2020 Spotlight: Reinforcement Learning with Augmented Data »
Misha Laskin · Kimin Lee · Adam Stooke · Lerrel Pinto · Pieter Abbeel · Aravind Srinivas -
2020 Poster: Learning Retrospective Knowledge with Reverse Reinforcement Learning »
Shangtong Zhang · Vivek Veeriah · Shimon Whiteson -
2020 Poster: Sparse Graphical Memory for Robust Planning »
Scott Emmons · Ajay Jain · Misha Laskin · Thanard Kurutach · Pieter Abbeel · Deepak Pathak -
2020 Poster: One Solution is Not All You Need: Few-Shot Extrapolation via Structured MaxEnt RL »
Saurabh Kumar · Aviral Kumar · Sergey Levine · Chelsea Finn -
2020 Poster: A Self-Tuning Actor-Critic Algorithm »
Tom Zahavy · Zhongwen Xu · Vivek Veeriah · Matteo Hessel · Junhyuk Oh · Hado van Hasselt · David Silver · Satinder Singh -
2020 Poster: Long-Horizon Visual Planning with Goal-Conditioned Hierarchical Predictors »
Karl Pertsch · Oleh Rybkin · Frederik Ebert · Shenghao Zhou · Dinesh Jayaraman · Chelsea Finn · Sergey Levine -
2020 Poster: Stochastic Latent Actor-Critic: Deep Reinforcement Learning with a Latent Variable Model »
Alex X. Lee · Anusha Nagabandi · Pieter Abbeel · Sergey Levine -
2020 Poster: MOPO: Model-based Offline Policy Optimization »
Tianhe Yu · Garrett Thomas · Lantao Yu · Stefano Ermon · James Zou · Sergey Levine · Chelsea Finn · Tengyu Ma -
2020 Poster: Novelty Search in Representational Space for Sample Efficient Exploration »
Ruo Yu Tao · Vincent Francois-Lavet · Joelle Pineau -
2020 Oral: Novelty Search in Representational Space for Sample Efficient Exploration »
Ruo Yu Tao · Vincent Francois-Lavet · Joelle Pineau -
2019 : Poster Presentations »
Rahul Mehta · Andrew Lampinen · Binghong Chen · Sergio Pascual-Diaz · Jordi Grau-Moya · Aldo Faisal · Jonathan Tompson · Yiren Lu · Khimya Khetarpal · Martin Klissarov · Pierre-Luc Bacon · Doina Precup · Thanard Kurutach · Aviv Tamar · Pieter Abbeel · Jinke He · Maximilian Igl · Shimon Whiteson · Wendelin Boehmer · Raphaël Marinier · Olivier Pietquin · Karol Hausman · Sergey Levine · Chelsea Finn · Tianhe Yu · Lisa Lee · Benjamin Eysenbach · Emilio Parisotto · Eric Xing · Ruslan Salakhutdinov · Hongyu Ren · Anima Anandkumar · Deepak Pathak · Christopher Lu · Trevor Darrell · Alexei Efros · Phillip Isola · Feng Liu · Bo Han · Gang Niu · Masashi Sugiyama · Saurabh Kumar · Janith Petangoda · Johan Ferret · James McClelland · Kara Liu · Animesh Garg · Robert Lange -
2019 : Poster Session »
Matthia Sabatelli · Adam Stooke · Amir Abdi · Paulo Rauber · Leonard Adolphs · Ian Osband · Hardik Meisheri · Karol Kurach · Johannes Ackermann · Matt Benatan · GUO ZHANG · Chen Tessler · Dinghan Shen · Mikayel Samvelyan · Riashat Islam · Murtaza Dalal · Luke Harries · Andrey Kurenkov · Konrad Żołna · Sudeep Dasari · Kristian Hartikainen · Ofir Nachum · Kimin Lee · Markus Holzleitner · Vu Nguyen · Francis Song · Christopher Grimm · Felipe Leno da Silva · Yuping Luo · Yifan Wu · Alex Lee · Thomas Paine · Wei-Yang Qu · Daniel Graves · Yannis Flet-Berliac · Yunhao Tang · Suraj Nair · Matthew Hausknecht · Akhil Bagaria · Simon Schmitt · Bowen Baker · Paavo Parmas · Benjamin Eysenbach · Lisa Lee · Siyu Lin · Daniel Seita · Abhishek Gupta · Riley Simmons-Edler · Yijie Guo · Kevin Corder · Vikash Kumar · Scott Fujimoto · Adam Lerer · Ignasi Clavera Gilaberte · Nicholas Rhinehart · Ashvin Nair · Ge Yang · Lingxiao Wang · Sungryull Sohn · J. Fernando Hernandez-Garcia · Xian Yeow Lee · Rupesh Srivastava · Khimya Khetarpal · Chenjun Xiao · Luckeciano Carvalho Melo · Rishabh Agarwal · Tianhe Yu · Glen Berseth · Devendra Singh Chaplot · Jie Tang · Anirudh Srinivasan · Tharun Kumar Reddy Medini · Aaron Havens · Misha Laskin · Asier Mujika · Rohan Saphal · Joseph Marino · Alex Ray · Joshua Achiam · Ajay Mandlekar · Zhuang Liu · Danijar Hafner · Zhiwen Tang · Ted Xiao · Michael Walton · Jeff Druce · Ferran Alet · Zhang-Wei Hong · Stephanie Chan · Anusha Nagabandi · Hao Liu · Hao Sun · Ge Liu · Dinesh Jayaraman · John Co-Reyes · Sophia Sanborn -
2019 : Late-Breaking Papers (Talks) »
David Silver · Simon Du · Matthias Plappert -
2019 Workshop: Deep Reinforcement Learning »
Pieter Abbeel · Chelsea Finn · Joelle Pineau · David Silver · Satinder Singh · Joshua Achiam · Carlos Florensa · Christopher Grimm · Haoran Tang · Vivek Veeriah -
2019 : Pieter Abbeel »
Pieter Abbeel -
2019 Workshop: Learning with Rich Experience: Integration of Learning Paradigms »
Zhiting Hu · Andrew Wilson · Chelsea Finn · Lisa Lee · Taylor Berg-Kirkpatrick · Ruslan Salakhutdinov · Eric Xing -
2019 Workshop: Retrospectives: A Venue for Self-Reflection in ML Research »
Ryan Lowe · Yoshua Bengio · Joelle Pineau · Michela Paganini · Jessica Forde · Shagun Sodhani · Abhishek Gupta · Joel Lehman · Peter Henderson · Kanika Madan · Koustuv Sinha · Xavier Bouthillier -
2019 Poster: Evaluating Protein Transfer Learning with TAPE »
Roshan Rao · Nicholas Bhattacharya · Neil Thomas · Yan Duan · Peter Chen · John Canny · Pieter Abbeel · Yun Song -
2019 Spotlight: Evaluating Protein Transfer Learning with TAPE »
Roshan Rao · Nicholas Bhattacharya · Neil Thomas · Yan Duan · Peter Chen · John Canny · Pieter Abbeel · Yun Song -
2019 Poster: Goal-conditioned Imitation Learning »
Yiming Ding · Carlos Florensa · Pieter Abbeel · Mariano Phielipp -
2019 Poster: Geometry-Aware Neural Rendering »
Joshua Tobin · Wojciech Zaremba · Pieter Abbeel -
2019 Poster: MCP: Learning Composable Hierarchical Control with Multiplicative Compositional Policies »
Xue Bin Peng · Michael Chang · Grace Zhang · Pieter Abbeel · Sergey Levine -
2019 Poster: Discovery of Useful Questions as Auxiliary Tasks »
Vivek Veeriah · Matteo Hessel · Zhongwen Xu · Janarthanan Rajendran · Richard L Lewis · Junhyuk Oh · Hado van Hasselt · David Silver · Satinder Singh -
2019 Oral: Geometry-Aware Neural Rendering »
Joshua Tobin · Wojciech Zaremba · Pieter Abbeel -
2019 Poster: No-Press Diplomacy: Modeling Multi-Agent Gameplay »
Philip Paquette · Yuchen Lu · SETON STEVEN BOCCO · Max Smith · Satya O.-G. · Jonathan K. Kummerfeld · Joelle Pineau · Satinder Singh · Aaron Courville -
2019 Poster: Language as an Abstraction for Hierarchical Deep Reinforcement Learning »
YiDing Jiang · Shixiang (Shane) Gu · Kevin Murphy · Chelsea Finn -
2019 Poster: Compositional Plan Vectors »
Coline Devin · Daniel Geng · Pieter Abbeel · Trevor Darrell · Sergey Levine -
2019 Poster: On the Utility of Learning about Humans for Human-AI Coordination »
Micah Carroll · Rohin Shah · Mark Ho · Tom Griffiths · Sanjit Seshia · Pieter Abbeel · Anca Dragan -
2019 Poster: Compression with Flows via Local Bits-Back Coding »
Jonathan Ho · Evan Lohn · Pieter Abbeel -
2019 Poster: Guided Meta-Policy Search »
Russell Mendonca · Abhishek Gupta · Rosen Kralev · Pieter Abbeel · Sergey Levine · Chelsea Finn -
2019 Spotlight: Compression with Flows via Local Bits-Back Coding »
Jonathan Ho · Evan Lohn · Pieter Abbeel -
2019 Spotlight: Guided Meta-Policy Search »
Russell Mendonca · Abhishek Gupta · Rosen Kralev · Pieter Abbeel · Sergey Levine · Chelsea Finn -
2018 : Pieter Abbeel »
Pieter Abbeel -
2018 : David Silver »
David Silver -
2018 : Joelle Pineau »
Joelle Pineau -
2018 : Coffee Break and Poster Session I »
Pim de Haan · Bin Wang · Dequan Wang · Aadil Hayat · Ibrahim Sobh · Muhammad Asif Rana · Thibault Buhet · Nicholas Rhinehart · Arjun Sharma · Alex Bewley · Michael Kelly · Lionel Blondé · Ozgur S. Oguz · Vaibhav Viswanathan · Jeroen Vanbaar · Konrad Żołna · Negar Rostamzadeh · Rowan McAllister · Sanjay Thakur · Alexandros Kalousis · Chelsea Sidrane · Sujoy Paul · Daphne Chen · Michal Garmulewicz · Henryk Michalewski · Coline Devin · Hongyu Ren · Jiaming Song · Wen Sun · Hanzhang Hu · Wulong Liu · Emilie Wirbel -
2018 Workshop: Deep Reinforcement Learning »
Pieter Abbeel · David Silver · Satinder Singh · Joelle Pineau · Joshua Achiam · Rein Houthooft · Aravind Srinivas -
2018 Poster: Temporal Regularization for Markov Decision Process »
Pierre Thodoroff · Audrey Durand · Joelle Pineau · Doina Precup -
2018 Poster: On Learning Intrinsic Rewards for Policy Gradient Methods »
Zeyu Zheng · Junhyuk Oh · Satinder Singh -
2018 Poster: Meta-Reinforcement Learning of Structured Exploration Strategies »
Abhishek Gupta · Russell Mendonca · YuXuan Liu · Pieter Abbeel · Sergey Levine -
2018 Poster: Learning Plannable Representations with Causal InfoGAN »
Thanard Kurutach · Aviv Tamar · Ge Yang · Stuart Russell · Pieter Abbeel -
2018 Spotlight: Meta-Reinforcement Learning of Structured Exploration Strategies »
Abhishek Gupta · Russell Mendonca · YuXuan Liu · Pieter Abbeel · Sergey Levine -
2018 Invited Talk: Reproducible, Reusable, and Robust Reinforcement Learning »
Joelle Pineau -
2018 Poster: Completing State Representations using Spectral Learning »
Nan Jiang · Alex Kulesza · Satinder Singh -
2018 Poster: Evolved Policy Gradients »
Rein Houthooft · Yuhua Chen · Phillip Isola · Bradly Stadie · Filip Wolski · OpenAI Jonathan Ho · Pieter Abbeel -
2018 Spotlight: Evolved Policy Gradients »
Rein Houthooft · Yuhua Chen · Phillip Isola · Bradly Stadie · Filip Wolski · OpenAI Jonathan Ho · Pieter Abbeel -
2018 Poster: The Importance of Sampling inMeta-Reinforcement Learning »
Bradly Stadie · Ge Yang · Rein Houthooft · Peter Chen · Yan Duan · Yuhuai Wu · Pieter Abbeel · Ilya Sutskever -
2017 : Afternoon Panel discussion »
Brian Skyrms · Satinder Singh · Jacob Andreas -
2017 : Panel Discussion »
Matt Botvinick · Emma Brunskill · Marcos Campos · Jan Peters · Doina Precup · David Silver · Josh Tenenbaum · Roy Fox -
2017 : "Language Emergence as Boundedly Optimal Control" »
Satinder Singh -
2017 : Meta-Learning Shared Hierarchies (Pieter Abbeel) »
Pieter Abbeel -
2017 : Minimax-Regret Querying on Side Effects in Factored Markov Decision Processes »
Satinder Singh -
2017 : Exhausting the Sim with Domain Randomization and Trying to Exhaust the Real World, Pieter Abbeel, UC Berkeley and Embodied Intelligence »
Pieter Abbeel · Gregory Kahn -
2017 : Deep Reinforcement Learning with Subgoals (David Silver) »
David Silver -
2017 : Invited Talk - Joelle Pineau »
Joelle Pineau -
2017 : Invited Talk - Satindar Singh »
Satinder Singh -
2017 Symposium: Deep Reinforcement Learning »
Pieter Abbeel · Yan Duan · David Silver · Satinder Singh · Junhyuk Oh · Rein Houthooft -
2017 Poster: Repeated Inverse Reinforcement Learning »
Kareem Amin · Nan Jiang · Satinder Singh -
2017 Poster: Natural Value Approximators: Learning when to Trust Past Estimates »
Zhongwen Xu · Joseph Modayil · Hado van Hasselt · Andre Barreto · David Silver · Tom Schaul -
2017 Poster: #Exploration: A Study of Count-Based Exploration for Deep Reinforcement Learning »
Haoran Tang · Rein Houthooft · Davis Foote · Adam Stooke · OpenAI Xi Chen · Yan Duan · John Schulman · Filip DeTurck · Pieter Abbeel -
2017 Poster: Successor Features for Transfer in Reinforcement Learning »
Andre Barreto · Will Dabney · Remi Munos · Jonathan Hunt · Tom Schaul · David Silver · Hado van Hasselt -
2017 Poster: A Unified Game-Theoretic Approach to Multiagent Reinforcement Learning »
Marc Lanctot · Vinicius Zambaldi · Audrunas Gruslys · Angeliki Lazaridou · Karl Tuyls · Julien Perolat · David Silver · Thore Graepel -
2017 Poster: Imagination-Augmented Agents for Deep Reinforcement Learning »
Sébastien Racanière · Theophane Weber · David Reichert · Lars Buesing · Arthur Guez · Danilo Jimenez Rezende · Adrià Puigdomènech Badia · Oriol Vinyals · Nicolas Heess · Yujia Li · Razvan Pascanu · Peter Battaglia · Demis Hassabis · David Silver · Daan Wierstra -
2017 Poster: Inverse Reward Design »
Dylan Hadfield-Menell · Smitha Milli · Pieter Abbeel · Stuart J Russell · Anca Dragan -
2017 Spotlight: Successor Features for Transfer in Reinforcement Learning »
Andre Barreto · Will Dabney · Remi Munos · Jonathan Hunt · Tom Schaul · David Silver · Hado van Hasselt -
2017 Spotlight: Natural Value Approximators: Learning when to Trust Past Estimates »
Zhongwen Xu · Joseph Modayil · Hado van Hasselt · Andre Barreto · David Silver · Tom Schaul -
2017 Spotlight: Repeated Inverse Reinforcement Learning »
Kareem Amin · Nan Jiang · Satinder Singh -
2017 Oral: Inverse Reward Design »
Dylan Hadfield-Menell · Smitha Milli · Pieter Abbeel · Stuart J Russell · Anca Dragan -
2017 Oral: Imagination-Augmented Agents for Deep Reinforcement Learning »
Sébastien Racanière · Theophane Weber · David Reichert · Lars Buesing · Arthur Guez · Danilo Jimenez Rezende · Adrià Puigdomènech Badia · Oriol Vinyals · Nicolas Heess · Yujia Li · Razvan Pascanu · Peter Battaglia · Demis Hassabis · David Silver · Daan Wierstra -
2017 Invited Talk: Deep Learning for Robotics »
Pieter Abbeel -
2017 Demonstration: A Deep Reinforcement Learning Chatbot »
Iulian Vlad Serban · Chinnadhurai Sankar · Mathieu Germain · Saizheng Zhang · Zhouhan Lin · Sandeep Subramanian · Taesup Kim · Michael Pieper · Sarath Chandar · Nan Rosemary Ke · Sai Rajeswar Mudumba · Alexandre de Brébisson · Jose Sotelo · Dendi A Suhubdy · Vincent Michalski · Joelle Pineau · Yoshua Bengio -
2017 Demonstration: Deep Robotic Learning using Visual Imagination and Meta-Learning »
Chelsea Finn · Frederik Ebert · Tianhe Yu · Annie Xie · Sudeep Dasari · Pieter Abbeel · Sergey Levine -
2017 Poster: One-Shot Imitation Learning »
Yan Duan · Marcin Andrychowicz · Bradly Stadie · OpenAI Jonathan Ho · Jonas Schneider · Ilya Sutskever · Pieter Abbeel · Wojciech Zaremba -
2017 Poster: Multitask Spectral Learning of Weighted Automata »
Guillaume Rabusseau · Borja Balle · Joelle Pineau -
2017 Poster: Value Prediction Network »
Junhyuk Oh · Satinder Singh · Honglak Lee -
2016 : Joelle Pineau »
Joelle Pineau -
2016 : Pieter Abbeel (University of California, Berkeley) »
Pieter Abbeel -
2016 : Invited Talk: Safe Reinforcement Learning for Robotics (Pieter Abbeel, UC Berkeley and OpenAI) »
Pieter Abbeel -
2016 Workshop: Deep Reinforcement Learning »
David Silver · Satinder Singh · Pieter Abbeel · Peter Chen -
2016 Poster: Learning values across many orders of magnitude »
Hado van Hasselt · Arthur Guez · Arthur Guez · Matteo Hessel · Volodymyr Mnih · David Silver -
2016 Poster: Backprop KF: Learning Discriminative Deterministic State Estimators »
Tuomas Haarnoja · Anurag Ajay · Sergey Levine · Pieter Abbeel -
2016 Poster: Learning to Poke by Poking: Experiential Learning of Intuitive Physics »
Pulkit Agrawal · Ashvin Nair · Pieter Abbeel · Jitendra Malik · Sergey Levine -
2016 Oral: Learning to Poke by Poking: Experiential Learning of Intuitive Physics »
Pulkit Agrawal · Ashvin Nair · Pieter Abbeel · Jitendra Malik · Sergey Levine -
2016 Poster: Combinatorial Energy Learning for Image Segmentation »
Jeremy Maitin-Shepard · Viren Jain · Michal Januszewski · Peter Li · Pieter Abbeel -
2016 Poster: InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets »
Xi Chen · Peter Chen · Yan Duan · Rein Houthooft · John Schulman · Ilya Sutskever · Pieter Abbeel -
2016 Poster: VIME: Variational Information Maximizing Exploration »
Rein Houthooft · Xi Chen · Peter Chen · Yan Duan · John Schulman · Filip De Turck · Pieter Abbeel -
2016 Poster: Value Iteration Networks »
Aviv Tamar · Sergey Levine · Pieter Abbeel · YI WU · Garrett Thomas -
2016 Oral: Value Iteration Networks »
Aviv Tamar · Sergey Levine · Pieter Abbeel · YI WU · Garrett Thomas -
2016 Poster: Cooperative Inverse Reinforcement Learning »
Dylan Hadfield-Menell · Stuart J Russell · Pieter Abbeel · Anca Dragan -
2016 Tutorial: Deep Reinforcement Learning Through Policy Optimization »
Pieter Abbeel · John Schulman -
2015 Workshop: Deep Reinforcement Learning »
Pieter Abbeel · John Schulman · Satinder Singh · David Silver -
2015 Poster: Gradient Estimation Using Stochastic Computation Graphs »
John Schulman · Nicolas Heess · Theophane Weber · Pieter Abbeel -
2015 Poster: Action-Conditional Video Prediction using Deep Networks in Atari Games »
Junhyuk Oh · Xiaoxiao Guo · Honglak Lee · Richard L Lewis · Satinder Singh -
2015 Spotlight: Action-Conditional Video Prediction using Deep Networks in Atari Games »
Junhyuk Oh · Xiaoxiao Guo · Honglak Lee · Richard L Lewis · Satinder Singh -
2015 Poster: Learning Continuous Control Policies by Stochastic Value Gradients »
Nicolas Heess · Gregory Wayne · David Silver · Timothy Lillicrap · Tom Erez · Yuval Tassa -
2014 Workshop: Novel Trends and Applications in Reinforcement Learning »
Csaba Szepesvari · Marc Deisenroth · Sergey Levine · Pedro Ortega · Brian Ziebart · Emma Brunskill · Naftali Tishby · Gerhard Neumann · Daniel Lee · Sridhar Mahadevan · Pieter Abbeel · David Silver · Vicenç Gómez -
2014 Workshop: From Bad Models to Good Policies (Sequential Decision Making under Uncertainty) »
Odalric-Ambrym Maillard · Timothy A Mann · Shie Mannor · Jeremie Mary · Laurent Orseau · Thomas Dietterich · Ronald Ortner · Peter Grünwald · Joelle Pineau · Raphael Fonteneau · Georgios Theocharous · Esteban D Arcaute · Christos Dimitrakakis · Nan Jiang · Doina Precup · Pierre-Luc Bacon · Marek Petrik · Aviv Tamar -
2014 Workshop: Autonomously Learning Robots »
Gerhard Neumann · Joelle Pineau · Peter Auer · Marc Toussaint -
2014 Poster: Learning Neural Network Policies with Guided Policy Search under Unknown Dynamics »
Sergey Levine · Pieter Abbeel -
2014 Demonstration: SmartWheeler – A smart robotic wheelchair platform »
Martin Gerdzhev · Joelle Pineau · Angus Leigh · Andrew Sutcliffe -
2014 Spotlight: Learning Neural Network Policies with Guided Policy Search under Unknown Dynamics »
Sergey Levine · Pieter Abbeel -
2014 Poster: Deep Learning for Real-Time Atari Game Play Using Offline Monte-Carlo Tree Search Planning »
Xiaoxiao Guo · Satinder Singh · Honglak Lee · Richard L Lewis · Xiaoshi Wang -
2013 Poster: Reward Mapping for Transfer in Long-Lived Agents »
Xiaoxiao Guo · Satinder Singh · Richard L Lewis -
2013 Poster: Learning from Limited Demonstrations »
Beomjoon Kim · Amir-massoud Farahmand · Joelle Pineau · Doina Precup -
2013 Poster: Bellman Error Based Feature Generation using Random Projections on Sparse Spaces »
Mahdi Milani Fard · Yuri Grinberg · Amir-massoud Farahmand · Joelle Pineau · Doina Precup -
2013 Spotlight: Learning from Limited Demonstrations »
Beomjoon Kim · Amir-massoud Farahmand · Joelle Pineau · Doina Precup -
2013 Session: Oral Session 9 »
Satinder Singh -
2012 Poster: Near Optimal Chernoff Bounds for Markov Decision Processes »
Teodor Mihai Moldovan · Pieter Abbeel -
2012 Spotlight: Near Optimal Chernoff Bounds for Markov Decision Processes »
Teodor Mihai Moldovan · Pieter Abbeel -
2012 Poster: On-line Reinforcement Learning Using Incremental Kernel-Based Stochastic Factorization »
Andre S Barreto · Doina Precup · Joelle Pineau -
2011 Session: Oral Session 10 »
Joelle Pineau -
2011 Poster: Reinforcement Learning using Kernel-Based Stochastic Factorization »
Andre S Barreto · Doina Precup · Joelle Pineau -
2010 Workshop: Learning and Planning from Batch Time Series Data »
Daniel Lizotte · Michael Bowling · Susan Murphy · Joelle Pineau · Sandeep Vijan -
2010 Spotlight: On a Connection between Importance Sampling and the Likelihood Ratio Policy Gradient »
Jie Tang · Pieter Abbeel -
2010 Poster: On a Connection between Importance Sampling and the Likelihood Ratio Policy Gradient »
Jie Tang · Pieter Abbeel -
2010 Poster: PAC-Bayesian Model Selection for Reinforcement Learning »
Mahdi Milani Fard · Joelle Pineau -
2010 Poster: Reward Design via Online Gradient Ascent »
Jonathan D Sorg · Satinder Singh · Richard L Lewis -
2009 Poster: Manifold Embeddings for Model-Based Reinforcement Learning under Partial Observability »
Keith Bush · Joelle Pineau -
2008 Poster: Simple Local Models for Complex Dynamical Systems »
Erik Talvitie · Satinder Singh -
2008 Oral: Simple Local Models for Complex Dynamical Systems »
Erik Talvitie · Satinder Singh -
2008 Poster: MDPs with Non-Deterministic Policies »
Mahdi Milani Fard · Joelle Pineau -
2007 Oral: Exponential Family Predictive Representations of State »
David Wingate · Satinder Singh -
2007 Poster: Exponential Family Predictive Representations of State »
David Wingate · Satinder Singh -
2007 Spotlight: Bayes-Adaptive POMDPs »
Stephane Ross · Brahim Chaib-draa · Joelle Pineau -
2007 Spotlight: Hierarchical Apprenticeship Learning with Application to Quadruped Locomotion »
J. Zico Kolter · Pieter Abbeel · Andrew Y Ng -
2007 Poster: Bayes-Adaptive POMDPs »
Stephane Ross · Brahim Chaib-draa · Joelle Pineau -
2007 Poster: Hierarchical Apprenticeship Learning with Application to Quadruped Locomotion »
J. Zico Kolter · Pieter Abbeel · Andrew Y Ng -
2007 Poster: Theoretical Analysis of Heuristic Search Methods for Online POMDPs »
Stephane Ross · Joelle Pineau · Brahim Chaib-draa -
2006 Poster: Max-margin classification of incomplete data »
Gal Chechik · Geremy Heitz · Gal Elidan · Pieter Abbeel · Daphne Koller -
2006 Spotlight: Max-margin classification of incomplete data »
Gal Chechik · Geremy Heitz · Gal Elidan · Pieter Abbeel · Daphne Koller -
2006 Poster: An Application of Reinforcement Learning to Aerobatic Helicopter Flight »
Pieter Abbeel · Adam P Coates · Andrew Y Ng · Morgan Quigley -
2006 Talk: An Application of Reinforcement Learning to Aerobatic Helicopter Flight »
Pieter Abbeel · Adam P Coates · Andrew Y Ng · Morgan Quigley