Timezone: »
Challenge Presenters: Casey Greene, Dylan Kotliar, Smita Kirshnaswamy
Conversation Facilitators: Alex Wiltschko, Aurel Nagy, Brendan Bulik-Sullivan, Casey Greene, David Kelley, Dylan Kotliar, Eli van Allen, Gokcen Eraslan, James Zou, Matt Johnson, Meromit Singer, Nir Hacohen, Samantha Morris, Scott Linderman, Smita Krishnaswamy
Author Information
Nir HaCohen (Harvard)
David Reshef (Massachusetts Institute of Technology)
Matthew Johnson (Google Brain)
Matt Johnson is a research scientist at Google Brain interested in software systems powering machine learning research. He is the tech lead for JAX, a system for composable function transformations in Python. He was a postdoc at Harvard University with Ryan Adams, working on composing graphical models with neural networks and applications in neurobiology. His Ph.D. is from MIT, where he worked with Alan Willsky on Bayesian nonparametrics, time series models, and scalable inference.
Sam Morris (Washington University in St. Louis)
Aurel Nagy (Harvard Medical School)
Harvard MD PhD candidate designing new tools for gene therapy.
Gokcen Eraslan (Broad Institute of MIT and Harvard)
Meromit Singer (Harvard Medical School / Dana-Farber Cancer Institute)
Eliezer Van Allen (Dana-Farber Cancer Institute)
Smita Krishnaswamy (Yale University)
Casey Greene (University of Pennsylvania)
Scott Linderman (Stanford)
Alexander Wiltschko (Google Brain)
Dylan Kotliar (Harvard University)
I’m a student in the MD/PhD program at Harvard Medical School in the Health Sciences and Technology track and the Harvard Systems Biology PhD program. In my PhD, I am developing computational tools for analyzing single-cell genomic data, and analyzing GWAS and single-cell rna-seq datasets of Ebola and Lassa Virus infections, hoping to understand why these pathogens are so deadly.
James Zou (Stanford University)
Brendan Bulik-Sullivan (GV)
More from the Same Authors
-
2021 : A sandbox for prediction and integration of DNA, RNA, and proteins in single cells »
Malte Luecken · Daniel Burkhardt · Robrecht Cannoodt · Christopher Lance · Aditi Agrawal · Hananeh Aliee · Ann Chen · Louise Deconinck · Angela Detweiler · Alejandro Granados · Shelly Huynh · Laura Isacco · Yang Kim · Dominik Klein · BONY DE KUMAR · Sunil Kuppasani · Heiko Lickert · Aaron McGeever · Honey Mekonen · Joaquin Melgarejo · Maurizio Morri · Michaela Müller · Norma Neff · Sheryl Paul · Bastian Rieck · Kaylie Schneider · Scott Steelman · Michael Sterr · Daniel Treacy · Alexander Tong · Alexandra-Chloe Villani · Guilin Wang · Jia Yan · Ce Zhang · Angela Pisco · Smita Krishnaswamy · Fabian Theis · Jonathan M Bloom -
2022 : Topological Jet Tagging »
Dawson Thomas · Sarah Demers · Smita Krishnaswamy · Bastian Rieck -
2022 : Geometric NeuralPDE (GNPnet) Models for Learning Dynamics »
Oluwadamilola Fasina · Smita Krishnaswamy · Aditi Krishnapriyan -
2022 : Protein structure generation via folding diffusion »
Kevin Wu · Kevin Yang · Rianne van den Berg · James Zou · Alex X Lu · Ava Soleimany -
2022 : Predicting Immune Escape with Pretrained Protein Language Model Embeddings »
Kyle Swanson · Howard Chang · James Zou -
2022 : DrML: Diagnosing and Rectifying Vision Models using Language »
Yuhui Zhang · Jeff Z. HaoChen · Shih-Cheng Huang · Kuan-Chieh Wang · James Zou · Serena Yeung -
2023 Poster: A Heat Diffusion Perspective on Geodesic Preserving Dimensionality Reduction »
Guillaume Huguet · Alexander Tong · Edward De Brouwer · Yanlei Zhang · Guy Wolf · Ian Adelstein · Smita Krishnaswamy -
2023 Poster: Unsupervised Protein-Ligand Binding Energy Prediction via Neural Euler's Rotation Equation »
Wengong Jin · Siranush Sarkizova · Xun Chen · Nir HaCohen · Caroline Uhler -
2023 Workshop: New Frontiers in Graph Learning (GLFrontiers) »
Jiaxuan You · Rex Ying · Hanjun Dai · Ge Liu · Azalia Mirhoseini · Smita Krishnaswamy -
2022 Spotlight: Lightning Talks 6A-4 »
Xiu-Shen Wei · Konstantina Dritsa · Guillaume Huguet · ABHRA CHAUDHURI · Zhenbin Wang · Kevin Qinghong Lin · Yutong Chen · Jianan Zhou · Yongsen Mao · Junwei Liang · Jinpeng Wang · Mao Ye · Yiming Zhang · Aikaterini Thoma · H.-Y. Xu · Daniel Sumner Magruder · Enwei Zhang · Jianing Zhu · Ronglai Zuo · Massimiliano Mancini · Hanxiao Jiang · Jun Zhang · Fangyun Wei · Faen Zhang · Ioannis Pavlopoulos · Zeynep Akata · Xiatian Zhu · Jingfeng ZHANG · Alexander Tong · Mattia Soldan · Chunhua Shen · Yuxin Peng · Liuhan Peng · Michael Wray · Tongliang Liu · Anjan Dutta · Yu Wu · Oluwadamilola Fasina · Panos Louridas · Angel Chang · Manik Kuchroo · Manolis Savva · Shujie LIU · Wei Zhou · Rui Yan · Gang Niu · Liang Tian · Bo Han · Eric Z. XU · Guy Wolf · Yingying Zhu · Brian Mak · Difei Gao · Masashi Sugiyama · Smita Krishnaswamy · Rong-Cheng Tu · Wenzhe Zhao · Weijie Kong · Chengfei Cai · WANG HongFa · Dima Damen · Bernard Ghanem · Wei Liu · Mike Zheng Shou -
2022 Spotlight: Manifold Interpolating Optimal-Transport Flows for Trajectory Inference »
Guillaume Huguet · Daniel Sumner Magruder · Alexander Tong · Oluwadamilola Fasina · Manik Kuchroo · Guy Wolf · Smita Krishnaswamy -
2022 Competition: Multimodal Single-Cell Integration Across Time, Individuals, and Batches »
Daniel Burkhardt · Jonathan Bloom · Robrecht Cannoodt · Malte Luecken · Smita Krishnaswamy · Christopher Lance · Angela Pisco · Fabian Theis -
2022 : Multimodal Single-Cell Integration Across Time and Individuals »
Daniel Burkhardt · Smita Krishnaswamy · Robrecht Cannoodt · Malte Luecken · Jonathan Bloom · Fabian Theis · Christopher Lance · Angela Pisco -
2022 Poster: Diffusion Curvature for Estimating Local Curvature in High Dimensional Data »
Dhananjay Bhaskar · Kincaid MacDonald · Oluwadamilola Fasina · Dawson Thomas · Bastian Rieck · Ian Adelstein · Smita Krishnaswamy -
2022 Poster: Manifold Interpolating Optimal-Transport Flows for Trajectory Inference »
Guillaume Huguet · Daniel Sumner Magruder · Alexander Tong · Oluwadamilola Fasina · Manik Kuchroo · Guy Wolf · Smita Krishnaswamy -
2021 : Multimodal Single-Cell Data Integration + Q&A »
Daniel Burkhardt · Smita Krishnaswamy · Malte Luecken · Debora Marks · Angela Pisco · Bastian Rieck · Jian Tang · Alexander Tong · Fabian Theis · Guy Wolf -
2020 : Closing Remarks »
Frederic Chazal · Smita Krishnaswamy · Roland Kwitt · Karthikeyan Natesan Ramamurthy · Bastian Rieck · Yuhei Umeda · Guy Wolf -
2020 Workshop: Learning Meaningful Representations of Life (LMRL.org) »
Elizabeth Wood · Debora Marks · Ray Jones · Adji Bousso Dieng · Alan Aspuru-Guzik · Anshul Kundaje · Barbara Engelhardt · Chang Liu · Edward Boyden · Kresten Lindorff-Larsen · Mor Nitzan · Smita Krishnaswamy · Wouter Boomsma · Yixin Wang · David Van Valen · Orr Ashenberg -
2020 Workshop: Topological Data Analysis and Beyond »
Bastian Rieck · Frederic Chazal · Smita Krishnaswamy · Roland Kwitt · Karthikeyan Natesan Ramamurthy · Yuhei Umeda · Guy Wolf -
2020 : Opening Remarks »
Frederic Chazal · Smita Krishnaswamy · Roland Kwitt · Karthikeyan Natesan Ramamurthy · Bastian Rieck · Yuhei Umeda · Guy Wolf -
2020 Poster: Neuron Shapley: Discovering the Responsible Neurons »
Amirata Ghorbani · James Zou -
2020 Poster: Uncovering the Topology of Time-Varying fMRI Data using Cubical Persistence »
Bastian Rieck · Tristan Yates · Christian Bock · Karsten Borgwardt · Guy Wolf · Nicholas Turk-Browne · Smita Krishnaswamy -
2020 Spotlight: Uncovering the Topology of Time-Varying fMRI Data using Cubical Persistence »
Bastian Rieck · Tristan Yates · Christian Bock · Karsten Borgwardt · Guy Wolf · Nicholas Turk-Browne · Smita Krishnaswamy -
2020 Tutorial: (Track3) Deep Implicit Layers: Neural ODEs, Equilibrium Models, and Differentiable Optimization Q&A »
David Duvenaud · J. Zico Kolter · Matthew Johnson -
2020 Poster: FrugalML: How to use ML Prediction APIs more accurately and cheaply »
Lingjiao Chen · Matei Zaharia · James Zou -
2020 Oral: FrugalML: How to use ML Prediction APIs more accurately and cheaply »
Lingjiao Chen · Matei Zaharia · James Zou -
2020 Poster: Evaluating Attribution for Graph Neural Networks »
Benjamin Sanchez-Lengeling · Jennifer Wei · Brian Lee · Emily Reif · Peter Wang · Wesley Qian · Kevin McCloskey · Lucy Colwell · Alexander Wiltschko -
2020 Poster: Learning Differential Equations that are Easy to Solve »
Jacob Kelly · Jesse Bettencourt · Matthew Johnson · David Duvenaud -
2020 Poster: MOPO: Model-based Offline Policy Optimization »
Tianhe Yu · Garrett Thomas · Lantao Yu · Stefano Ermon · James Zou · Sergey Levine · Chelsea Finn · Tengyu Ma -
2020 Tutorial: (Track3) Deep Implicit Layers: Neural ODEs, Equilibrium Models, and Differentiable Optimization »
David Duvenaud · J. Zico Kolter · Matthew Johnson -
2019 : Lunch break & Poster session »
Breandan Considine · Michael Innes · Du Phan · Dougal Maclaurin · Robin Manhaeve · Alexey Radul · Shashi Gowda · Ekansh Sharma · Eli Sennesh · Maxim Kochurov · Gordon Plotkin · Thomas Wiecki · Navjot Kukreja · Chung-chieh Shan · Matthew Johnson · Dan Belov · Neeraj Pradhan · Wannes Meert · Angelika Kimmig · Luc De Raedt · Brian Patton · Matthew Hoffman · Rif A. Saurous · Daniel Roy · Eli Bingham · Martin Jankowiak · Colin Carroll · Junpeng Lao · Liam Paull · Martin Abadi · Angel Rojas Jimenez · JP Chen -
2019 Workshop: Program Transformations for ML »
Pascal Lamblin · Atilim Gunes Baydin · Alexander Wiltschko · Bart van Merriënboer · Emily Fertig · Barak Pearlmutter · David Duvenaud · Laurent Hascoet -
2019 : Cell »
Anne Carpenter · Jian Zhou · Maria Chikina · Alexander Tong · Ben Lengerich · Aly Abdelkareem · Gokcen Eraslan · Stephen Ra · Daniel Burkhardt · Frederick A Matsen IV · Alan Moses · Zhenghao Chen · Marzieh Haghighi · Alex Lu · Geoffrey Schau · Jeff Nivala · Miriam Shiffman · Hannes Harbrecht · Levi Masengo Wa Umba · Joshua Weinstein -
2019 Workshop: Learning Meaningful Representations of Life »
Elizabeth Wood · Yakir Reshef · Jonathan Bloom · Jasper Snoek · Barbara Engelhardt · Scott Linderman · Suchi Saria · Alexander Wiltschko · Casey Greene · Chang Liu · Kresten Lindorff-Larsen · Debora Marks -
2019 Poster: Towards Automatic Concept-based Explanations »
Amirata Ghorbani · James Wexler · James Zou · Been Kim -
2019 Poster: Visualizing the PHATE of Neural Networks »
Scott Gigante · Adam S Charles · Smita Krishnaswamy · Gal Mishne -
2018 Poster: Autoconj: Recognizing and Exploiting Conjugacy Without a Domain-Specific Language »
Matthew D. Hoffman · Matthew Johnson · Dustin Tran -
2018 Poster: Tangent: Automatic differentiation using source-code transformation for dynamically typed array programming »
Bart van Merriënboer · Dan Moldovan · Alexander Wiltschko -
2018 Poster: Simple, Distributed, and Accelerated Probabilistic Programming »
Dustin Tran · Matthew Hoffman · Dave Moore · Christopher Suter · Srinivas Vasudevan · Alexey Radul · Matthew Johnson · Rif A. Saurous -
2018 Poster: Geometry Based Data Generation »
Ofir Lindenbaum · Jay Stanley · Guy Wolf · Smita Krishnaswamy -
2018 Poster: Learning a Warping Distance from Unlabeled Time Series Using Sequence Autoencoders »
Abubakar Abid · James Zou -
2018 Spotlight: Geometry Based Data Generation »
Ofir Lindenbaum · Jay Stanley · Guy Wolf · Smita Krishnaswamy -
2017 : KFAC and Natural Gradients »
Matthew Johnson · Daniel Duckworth