Timezone: »
Deep convolutional artificial neural networks (ANNs) are the leading class of candidate models of the mechanisms of visual processing in the primate ventral stream. While initially inspired by brain anatomy, over the past years, these ANNs have evolved from a simple eight-layer architecture in AlexNet to extremely deep and branching architectures, demonstrating increasingly better object categorization performance, yet bringing into question how brain-like they still are. In particular, typical deep models from the machine learning community are often hard to map onto the brain's anatomy due to their vast number of layers and missing biologically-important connections, such as recurrence. Here we demonstrate that better anatomical alignment to the brain and high performance on machine learning as well as neuroscience measures do not have to be in contradiction. We developed CORnet-S, a shallow ANN with four anatomically mapped areas and recurrent connectivity, guided by Brain-Score, a new large-scale composite of neural and behavioral benchmarks for quantifying the functional fidelity of models of the primate ventral visual stream. Despite being significantly shallower than most models, CORnet-S is the top model on Brain-Score and outperforms similarly compact models on ImageNet. Moreover, our extensive analyses of CORnet-S circuitry variants reveal that recurrence is the main predictive factor of both Brain-Score and ImageNet top-1 performance. Finally, we report that the temporal evolution of the CORnet-S "IT" neural population resembles the actual monkey IT population dynamics. Taken together, these results establish CORnet-S, a compact, recurrent ANN, as the current best model of the primate ventral visual stream.
Author Information
Jonas Kubilius (MIT, KU Leuven, Three Thirds)
Martin Schrimpf (MIT)
Ha Hong (Bay Labs Inc.)
Najib Majaj (NYU)
Rishi Rajalingham (MIT)
Elias Issa (Columbia University)
Kohitij Kar (MIT)
Pouya Bashivan (MIT)
Jonathan Prescott-Roy (MIT)
Kailyn Schmidt (MIT)
Aran Nayebi (Stanford University)
Daniel Bear (Stanford University)
Daniel Yamins (Stanford University)
James J DiCarlo (Massachusetts Institute of Technology)
Prof. DiCarlo received his Ph.D. in biomedical engineering and his M.D. from Johns Hopkins in 1998, and did his postdoctoral training in primate visual neurophysiology at Baylor College of Medicine. He joined the MIT faculty in 2002. He is a Sloan Fellow, a Pew Scholar, and a McKnight Scholar. His lab’s research goal is a computational understanding of the brain mechanisms that underlie object recognition. They use large-scale neurophysiology, brain imaging, optogenetic methods, and high-throughput computational simulations to understand how the primate ventral visual stream is able to untangle object identity from other latent image variables such as object position, scale, and pose. They have shown that populations of neurons at the highest cortical visual processing stage (IT) rapidly convey explicit representations of object identity, and that this ability is reshaped by natural visual experience. They have also shown how visual recognition tests can be used to discover new, high-performing bio-inspired algorithms. This understanding may inspire new machine vision systems, new neural prosthetics, and a foundation for understanding how high-level visual representation is altered in conditions such as agnosia, autism and dyslexia.
Related Events (a corresponding poster, oral, or spotlight)
-
2019 Poster: Brain-Like Object Recognition with High-Performing Shallow Recurrent ANNs »
Thu Dec 12th 06:45 -- 08:45 PM Room East Exhibition Hall B + C
More from the Same Authors
-
2020 Poster: Identifying Learning Rules From Neural Network Observables »
Aran Nayebi · Sanjana Srivastava · Surya Ganguli · Daniel Yamins -
2020 Spotlight: Identifying Learning Rules From Neural Network Observables »
Aran Nayebi · Sanjana Srivastava · Surya Ganguli · Daniel Yamins -
2020 Poster: Simulating a Primary Visual Cortex at the Front of CNNs Improves Robustness to Image Perturbations »
Joel Dapello · Tiago Marques · Martin Schrimpf · Franziska Geiger · David Cox · James J DiCarlo -
2020 Poster: Learning Physical Graph Representations from Visual Scenes »
Daniel Bear · Chaofei Fan · Damian Mrowca · Yunzhu Li · Seth Alter · Aran Nayebi · Jeremy Schwartz · Li Fei-Fei · Jiajun Wu · Josh Tenenbaum · Daniel Yamins -
2020 Poster: Pruning neural networks without any data by iteratively conserving synaptic flow »
Hidenori Tanaka · Daniel Kunin · Daniel Yamins · Surya Ganguli -
2020 Spotlight: Simulating a Primary Visual Cortex at the Front of CNNs Improves Robustness to Image Perturbations »
Joel Dapello · Tiago Marques · Martin Schrimpf · Franziska Geiger · David Cox · James J DiCarlo -
2020 Oral: Learning Physical Graph Representations from Visual Scenes »
Daniel Bear · Chaofei Fan · Damian Mrowca · Yunzhu Li · Seth Alter · Aran Nayebi · Jeremy Schwartz · Li Fei-Fei · Jiajun Wu · Josh Tenenbaum · Daniel Yamins -
2019 Poster: From deep learning to mechanistic understanding in neuroscience: the structure of retinal prediction »
Hidenori Tanaka · Aran Nayebi · Niru Maheswaranathan · Lane McIntosh · Stephen Baccus · Surya Ganguli -
2018 Poster: Learning to Play With Intrinsically-Motivated, Self-Aware Agents »
Nick Haber · Damian Mrowca · Stephanie Wang · Li Fei-Fei · Daniel Yamins -
2018 Poster: Task-Driven Convolutional Recurrent Models of the Visual System »
Aran Nayebi · Daniel Bear · Jonas Kubilius · Kohitij Kar · Surya Ganguli · David Sussillo · James J DiCarlo · Daniel Yamins -
2018 Poster: Flexible neural representation for physics prediction »
Damian Mrowca · Chengxu Zhuang · Elias Wang · Nick Haber · Li Fei-Fei · Josh Tenenbaum · Daniel Yamins -
2017 Oral: Toward Goal-Driven Neural Network Models for the Rodent Whisker-Trigeminal System »
Chengxu Zhuang · Jonas Kubilius · Mitra JZ Hartmann · Daniel Yamins -
2017 Poster: Toward Goal-Driven Neural Network Models for the Rodent Whisker-Trigeminal System »
Chengxu Zhuang · Jonas Kubilius · Mitra JZ Hartmann · Daniel Yamins -
2016 Poster: Deep Learning Models of the Retinal Response to Natural Scenes »
Lane McIntosh · Niru Maheswaranathan · Aran Nayebi · Surya Ganguli · Stephen Baccus -
2013 Poster: Hierarchical Modular Optimization of Convolutional Networks Achieves Representations Similar to Macaque IT and Human Ventral Stream »
Daniel L Yamins · Ha Hong · Charles Cadieu · James J DiCarlo -
2013 Tutorial: Mechanisms Underlying Visual Object Recognition: Humans vs. Neurons vs. Machines »
James J DiCarlo