Timezone: »
Spotlight
An adaptive nearest neighbor rule for classification
Akshay Balsubramani · Sanjoy Dasgupta · yoav Freund · Shay Moran
We introduce a variant of the $k$-nearest neighbor classifier in which $k$ is chosen adaptively for each query, rather than supplied as a parameter. The choice of $k$ depends on properties of each neighborhood, and therefore may significantly vary between different points. (For example, the algorithm will use larger $k$ for predicting the labels of points in noisy regions.)
We provide theory and experiments that demonstrate that the algorithm performs comparably to, and sometimes better than, $k$-NN with an optimal choice of $k$. In particular, we derive bounds on the convergence rates of our classifier that depend on a local quantity we call the ``advantage'' which is significantly weaker than the Lipschitz conditions used in previous convergence rate proofs. These generalization bounds hinge on a variant of the seminal Uniform Convergence Theorem due to Vapnik and Chervonenkis; this variant concerns conditional probabilities and may be of independent interest.
Author Information
Akshay Balsubramani (Stanford)
Sanjoy Dasgupta (UC San Diego)
yoav Freund (UCSD)
Shay Moran (Google AI Princeton)
Related Events (a corresponding poster, oral, or spotlight)
-
2019 Poster: An adaptive nearest neighbor rule for classification »
Thu. Dec 12th 01:00 -- 03:00 AM Room East Exhibition Hall B + C #225
More from the Same Authors
-
2021 Spotlight: Towards a Unified Information-Theoretic Framework for Generalization »
Mahdi Haghifam · Gintare Karolina Dziugaite · Shay Moran · Dan Roy -
2022 Poster: Integral Probability Metrics PAC-Bayes Bounds »
Ron Amit · Baruch Epstein · Shay Moran · Ron Meir -
2022 Poster: Universal Rates for Interactive Learning »
Steve Hanneke · Amin Karbasi · Shay Moran · Grigoris Velegkas -
2022 Poster: On Optimal Learning Under Targeted Data Poisoning »
Steve Hanneke · Amin Karbasi · Mohammad Mahmoody · Idan Mehalel · Shay Moran -
2021 Poster: Multiclass Boosting and the Cost of Weak Learning »
Nataly Brukhim · Elad Hazan · Shay Moran · Indraneel Mukherjee · Robert Schapire -
2021 Poster: Towards a Unified Information-Theoretic Framework for Generalization »
Mahdi Haghifam · Gintare Karolina Dziugaite · Shay Moran · Dan Roy -
2020 : Q & A and Panel Session with Tom Mitchell, Jenn Wortman Vaughan, Sanjoy Dasgupta, and Finale Doshi-Velez »
Tom Mitchell · Jennifer Wortman Vaughan · Sanjoy Dasgupta · Finale Doshi-Velez · Zachary Lipton -
2020 Poster: Synthetic Data Generators -- Sequential and Private »
Olivier Bousquet · Roi Livni · Shay Moran -
2020 Poster: Learning from Mixtures of Private and Public Populations »
Raef Bassily · Shay Moran · Anupama Nandi -
2020 Poster: Online Agnostic Boosting via Regret Minimization »
Nataly Brukhim · Xinyi Chen · Elad Hazan · Shay Moran -
2020 Poster: A Limitation of the PAC-Bayes Framework »
Roi Livni · Shay Moran -
2019 Poster: Private Learning Implies Online Learning: An Efficient Reduction »
Alon Gonen · Elad Hazan · Shay Moran -
2019 Spotlight: Private Learning Implies Online Learning: An Efficient Reduction »
Alon Gonen · Elad Hazan · Shay Moran -
2019 Poster: Learning to Screen »
Alon Cohen · Avinatan Hassidim · Haim Kaplan · Yishay Mansour · Shay Moran -
2019 Poster: Limits of Private Learning with Access to Public Data »
Raef Bassily · Shay Moran · Noga Alon -
2018 Poster: Learning from discriminative feature feedback »
Sanjoy Dasgupta · Sivan Sabato · Nicholas Roberts · Akansha Dey -
2017 Poster: Submultiplicative Glivenko-Cantelli and Uniform Convergence of Revenues »
Noga Alon · Moshe Babaioff · Yannai A. Gonczarowski · Yishay Mansour · Shay Moran · Amir Yehudayoff -
2017 Spotlight: Submultiplicative Glivenko-Cantelli and Uniform Convergence of Revenues »
Noga Alon · Moshe Babaioff · Yannai A. Gonczarowski · Yishay Mansour · Shay Moran · Amir Yehudayoff -
2016 Poster: Optimal Binary Classifier Aggregation for General Losses »
Akshay Balsubramani · Yoav S Freund -
2016 Poster: Supervised learning through the lens of compression »
Ofir David · Shay Moran · Amir Yehudayoff -
2016 Oral: Supervised learning through the lens of compression »
Ofir David · Shay Moran · Amir Yehudayoff -
2014 Poster: Incremental Clustering: The Case for Extra Clusters »
Margareta Ackerman · Sanjoy Dasgupta -
2014 Poster: Optimal rates for k-NN density and mode estimation »
Sanjoy Dasgupta · Samory Kpotufe -
2013 Poster: Moment-based Uniform Deviation Bounds for $k$-means and Friends »
Matus J Telgarsky · Sanjoy Dasgupta