Timezone: »
Machine learning techniques have recently been adopted in various applications in medicine, biology, chemistry, and material engineering. An important task is to predict the properties of molecules, which serves as the main subroutine in many downstream applications such as virtual screening and drug design. Despite the increasing interest, the key challenge is to construct proper representations of molecules for learning algorithms. This paper introduces the N-gram graph, a simple unsupervised representation for molecules. The method first embeds the vertices in the molecule graph. It then constructs a compact representation for the graph by assembling the vertex embeddings in short walks in the graph, which we show is equivalent to a simple graph neural network that needs no training. The representations can thus be efficiently computed and then used with supervised learning methods for prediction. Experiments on 60 tasks from 10 benchmark datasets demonstrate its advantages over both popular graph neural networks and traditional representation methods. This is complemented by theoretical analysis showing its strong representation and prediction power.
Author Information
Shengchao Liu (UW-Madison)
Mehmet Demirel (University of Wisconsin-Madison)
Yingyu Liang (University of Wisconsin Madison)
Related Events (a corresponding poster, oral, or spotlight)
-
2019 Poster: N-Gram Graph: Simple Unsupervised Representation for Graphs, with Applications to Molecules »
Fri. Dec 13th 01:00 -- 03:00 AM Room East Exhibition Hall B + C #70
More from the Same Authors
-
2022 : Domain Generalization with Nuclear Norm Regularization »
Zhenmei Shi · Yifei Ming · Ying Fan · Frederic Sala · Yingyu Liang -
2022 : Best of Both Worlds: Towards Adversarial Robustness with Transduction and Rejection »
Nils Palumbo · Yang Guo · Xi Wu · Jiefeng Chen · Yingyu Liang · Somesh Jha -
2020 Poster: Functional Regularization for Representation Learning: A Unified Theoretical Perspective »
Siddhant Garg · Yingyu Liang -
2019 Poster: Robust Attribution Regularization »
Jiefeng Chen · Xi Wu · Vaibhav Rastogi · Yingyu Liang · Somesh Jha -
2019 Poster: Learning and Generalization in Overparameterized Neural Networks, Going Beyond Two Layers »
Zeyuan Allen-Zhu · Yuanzhi Li · Yingyu Liang -
2018 : Contributed Work »
Thaer Moustafa Dieb · Aditya Balu · Amir H. Khasahmadi · Viraj Shah · Boris Knyazev · Payel Das · Garrett Goh · Georgy Derevyanko · Gianni De Fabritiis · Reiko Hagawa · John Ingraham · David Belanger · Jialin Song · Kim Nicoli · Miha Skalic · Michelle Wu · Niklas Gebauer · Peter Bjørn Jørgensen · Ryan-Rhys Griffiths · Shengchao Liu · Sheshera Mysore · Hai Leong Chieu · Philippe Schwaller · Bart Olsthoorn · Bianca-Cristina Cristescu · Wei-Cheng Tseng · Seongok Ryu · Iddo Drori · Kevin Yang · Soumya Sanyal · Zois Boukouvalas · Rishi Bedi · Arindam Paul · Sambuddha Ghosal · Daniil Bash · Clyde Fare · Zekun Ren · Ali Oskooei · Minn Xuan Wong · Paul Sinz · Théophile Gaudin · Wengong Jin · Paul Leu -
2018 Poster: ATOMO: Communication-efficient Learning via Atomic Sparsification »
Hongyi Wang · Scott Sievert · Shengchao Liu · Zachary Charles · Dimitris Papailiopoulos · Stephen Wright -
2018 Poster: Learning Overparameterized Neural Networks via Stochastic Gradient Descent on Structured Data »
Yuanzhi Li · Yingyu Liang -
2018 Spotlight: Learning Overparameterized Neural Networks via Stochastic Gradient Descent on Structured Data »
Yuanzhi Li · Yingyu Liang