Timezone: »
When we are faced with challenging image classification tasks, we often explain our reasoning by dissecting the image, and pointing out prototypical aspects of one class or another. The mounting evidence for each of the classes helps us make our final decision. In this work, we introduce a deep network architecture -- prototypical part network (ProtoPNet), that reasons in a similar way: the network dissects the image by finding prototypical parts, and combines evidence from the prototypes to make a final classification. The model thus reasons in a way that is qualitatively similar to the way ornithologists, physicians, and others would explain to people on how to solve challenging image classification tasks. The network uses only image-level labels for training without any annotations for parts of images. We demonstrate our method on the CUB-200-2011 dataset and the Stanford Cars dataset. Our experiments show that ProtoPNet can achieve comparable accuracy with its analogous non-interpretable counterpart, and when several ProtoPNets are combined into a larger network, it can achieve an accuracy that is on par with some of the best-performing deep models. Moreover, ProtoPNet provides a level of interpretability that is absent in other interpretable deep models.
Author Information
Chaofan Chen (Duke University)
Oscar Li (Carnegie Mellon University)
Daniel Tao (Duke University)
Alina Barnett (Duke University)
Cynthia Rudin (Duke)
Jonathan K Su (MIT Lincoln Laboratory)
Related Events (a corresponding poster, oral, or spotlight)
-
2019 Poster: This Looks Like That: Deep Learning for Interpretable Image Recognition »
Thu. Dec 12th 06:45 -- 08:45 PM Room East Exhibition Hall B + C #85
More from the Same Authors
-
2022 : Making the World More Equal, One Ride at a Time: Studying Public Transportation Initiatives Using Interpretable Causal Inference »
Gaurav Rajesh Parikh · Albert Sun · Jenny Huang · Lesia Semenova · Cynthia Rudin -
2023 Poster: This Looks Like Those: Illuminating Prototypical Concepts Using Multiple Visualizations »
Chiyu Ma · Brandon Zhao · Chaofan Chen · Cynthia Rudin -
2023 Poster: A Path to Simpler Models Starts With Noise »
Lesia Semenova · Harry Chen · Ronald Parr · Cynthia Rudin -
2023 Poster: The Rashomon Importance Distribution: Getting RID of Unstable, Single Model-based Variable Importance »
Jon Donnelly · Srikar Katta · Cynthia Rudin · Edward Browne -
2023 Poster: Exploring and Interacting with the Set of Good Sparse Generalized Additive Models »
Zhi Chen · Chudi Zhong · Margo Seltzer · Cynthia Rudin -
2023 Poster: OKRidge: Scalable Optimal k-Sparse Ridge Regression for Learning Dynamical Systems »
Jiachang Liu · Sam Rosen · Chudi Zhong · Cynthia Rudin -
2022 Panel: Panel 3A-2: Linear tree shap… & Exploring the Whole… »
peng yu · Cynthia Rudin -
2022 : Panel Discussion »
Cynthia Rudin · Dan Bohus · Brenna Argall · Alison Gopnik · Igor Mordatch · Samuel Kaski -
2022 : Let’s Give Domain Experts a Choice by Creating Many Approximately-Optimal Machine Learning Models »
Cynthia Rudin -
2022 Poster: Exploring the Whole Rashomon Set of Sparse Decision Trees »
Rui Xin · Chudi Zhong · Zhi Chen · Takuya Takagi · Margo Seltzer · Cynthia Rudin -
2022 Poster: Rethinking Nonlinear Instrumental Variable Models through Prediction Validity »
Chunxiao Li · Cynthia Rudin · Tyler H. McCormick -
2022 Poster: FasterRisk: Fast and Accurate Interpretable Risk Scores »
Jiachang Liu · Chudi Zhong · Boxuan Li · Margo Seltzer · Cynthia Rudin -
2021 : AME: Interpretable Almost Exact Matching for Causal Inference »
Haoning Jiang · Thomas Howell · Neha Gupta · Vittorio Orlandi · Sudeepa Roy · Marco Morucci · Harsh Parikh · Alexander Volfovsky · Cynthia Rudin -
2020 : Contributed Talk - Cryo-ZSSR: multiple-image super-resolution based on deep internal learning »
Qinwen Huang · Reed Chen · Cynthia Rudin -
2020 Workshop: Self-Supervised Learning -- Theory and Practice »
Pengtao Xie · Shanghang Zhang · Pulkit Agrawal · Ishan Misra · Cynthia Rudin · Abdelrahman Mohamed · Wenzhen Yuan · Barret Zoph · Laurens van der Maaten · Xingyi Yang · Eric Xing -
2020 : How should researchers engage with controversial applications of AI? »
Logan Koepke · CATHERINE ONEIL · Tawana Petty · Cynthia Rudin · Deborah Raji · Shawn Bushway -
2020 Workshop: Fair AI in Finance »
Senthil Kumar · Cynthia Rudin · John Paisley · Isabelle Moulinier · C. Bayan Bruss · Eren K. · Susan Tibbs · Oluwatobi Olabiyi · Simona Gandrabur · Svitlana Vyetrenko · Kevin Compher -
2019 Poster: Optimal Sparse Decision Trees »
Xiyang Hu · Cynthia Rudin · Margo Seltzer -
2019 Spotlight: Optimal Sparse Decision Trees »
Xiyang Hu · Cynthia Rudin · Margo Seltzer -
2018 : Posters and Open Discussions (see below for poster titles) »
Ramya Malur Srinivasan · Miguel Perez · Yuanyuan Liu · Ben Wood · Dan Philps · Kyle Brown · Daniel Martin · Mykola Pechenizkiy · Luca Costabello · Rongguang Wang · Suproteem Sarkar · Sangwoong Yoon · Zhuoran Xiong · Enguerrand Horel · Zhu (Drew) Zhang · Ulf Johansson · Jonathan Kochems · Gregory Sidier · Prashant Reddy · Lana Cuthbertson · Yvonne Wambui · Christelle Marfaing · Galen Harrison · Irene Unceta Mendieta · Thomas Kehler · Mark Weber · Li Ling · Ceena Modarres · Abhinav Dhall · Arash Nourian · David Byrd · Ajay Chander · Xiao-Yang Liu · Hongyang Yang · Shuang (Sophie) Zhai · Freddy Lecue · Sirui Yao · Rory McGrath · Artur Garcez · Vangelis Bacoyannis · Alexandre Garcia · Lukas Gonon · Mark Ibrahim · Melissa Louie · Omid Ardakanian · Cecilia Sönströd · Kojin Oshiba · Chaofan Chen · Suchen Jin · aldo pareja · Toyo Suzumura -
2018 : Invited Talk 6: Is it possible to have interpretable models for AI in Finance? »
Cynthia Rudin -
2018 : Poster Session 1 (note there are numerous missing names here, all papers appear in all poster sessions) »
Akhilesh Gotmare · Kenneth Holstein · Jan Brabec · Michal Uricar · Kaleigh Clary · Cynthia Rudin · Sam Witty · Andrew Ross · Shayne O'Brien · Babak Esmaeili · Jessica Forde · Massimo Caccia · Ali Emami · Scott Jordan · Bronwyn Woods · D. Sculley · Rebekah Overdorf · Nicolas Le Roux · Peter Henderson · Brandon Yang · Tzu-Yu Liu · David Jensen · Niccolo Dalmasso · Weitang Liu · Paul Marc TRICHELAIR · Jun Ki Lee · Akanksha Atrey · Matt Groh · Yotam Hechtlinger · Emma Tosch