Timezone: »
We take an unorthodox view of voting by expanding the design space to include both the elicitation rule, whereby voters map their (cardinal) preferences to votes, and the aggregation rule, which transforms the reported votes into collective decisions. Intuitively, there is a tradeoff between the communication requirements of the elicitation rule (i.e., the number of bits of information that voters need to provide about their preferences) and the efficiency of the outcome of the aggregation rule, which we measure through distortion (i.e., how well the utilitarian social welfare of the outcome approximates the maximum social welfare in the worst case). Our results chart the Pareto frontier of the communication-distortion tradeoff.
Author Information
Debmalya Mandal (Columbia University)
Ariel Procaccia (Carnegie Mellon University)
Nisarg Shah (University of Toronto)
David Woodruff (Carnegie Mellon University)
Related Events (a corresponding poster, oral, or spotlight)
-
2019 Poster: Efficient and Thrifty Voting by Any Means Necessary »
Thu. Dec 12th 01:00 -- 03:00 AM Room East Exhibition Hall B + C #217
More from the Same Authors
-
2023 Poster: Lower Bounds on Adaptive Sensing for Matrix Recovery »
Praneeth Kacham · David Woodruff -
2023 Poster: Sketching Algorithms for Sparse Dictionary Learning: PTAS and Turnstile Streaming »
Gregory Dexter · Petros Drineas · David Woodruff · Taisuke Yasuda -
2023 Poster: Computing Approximate $\ell_p$ Sensitivities »
Swati Padmanabhan · David Woodruff · Richard Zhang -
2023 Poster: Group Fairness in Peer Review »
Haris Aziz · Evi Micha · Nisarg Shah -
2023 Poster: Explainable and Efficient Randomized Voting Rules »
Soroush Ebadian · Aris Filos-Ratsikas · Mohamad Latifian · Nisarg Shah -
2023 Poster: Hardness of Low Rank Approximation of Entrywise Transformed Matrix Products »
Tamas Sarlos · Xingyou Song · David Woodruff · Richard Zhang -
2023 Poster: On Robust Streaming for Learning with Experts: Algorithms and Lower Bounds »
David Woodruff · Fred Zhang · Samson Zhou -
2023 Poster: Near-Optimal $k$-Clustering in the Sliding Window Model »
David Woodruff · Peilin Zhong · Samson Zhou -
2022 Spotlight: Optimal Query Complexities for Dynamic Trace Estimation »
David Woodruff · Fred Zhang · Richard Zhang -
2022 Poster: Is Sortition Both Representative and Fair? »
Soroush Ebadian · Gregory Kehne · Evi Micha · Ariel Procaccia · Nisarg Shah -
2022 Poster: Optimal Query Complexities for Dynamic Trace Estimation »
David Woodruff · Fred Zhang · Richard Zhang -
2021 Poster: Fair Sortition Made Transparent »
Bailey Flanigan · Gregory Kehne · Ariel Procaccia -
2021 Poster: Fair Algorithms for Multi-Agent Multi-Armed Bandits »
Safwan Hossain · Evi Micha · Nisarg Shah -
2020 Poster: Ensuring Fairness Beyond the Training Data »
Debmalya Mandal · Samuel Deng · Suman Jana · Jeannette Wing · Daniel Hsu -
2019 : Putting Ethical AI to the Vote »
Ariel Procaccia -
2019 Poster: Tight Dimensionality Reduction for Sketching Low Degree Polynomial Kernels »
Michela Meister · Tamas Sarlos · David Woodruff -
2019 Poster: Average Case Column Subset Selection for Entrywise $\ell_1$-Norm Loss »
Zhao Song · David Woodruff · Peilin Zhong -
2019 Spotlight: Paradoxes in Fair Machine Learning »
Paul Gölz · Anson Kahng · Ariel Procaccia -
2019 Poster: Regularized Weighted Low Rank Approximation »
Frank Ban · David Woodruff · Richard Zhang -
2019 Poster: Total Least Squares Regression in Input Sparsity Time »
Huaian Diao · Zhao Song · David Woodruff · Xin Yang -
2019 Poster: Optimal Sketching for Kronecker Product Regression and Low Rank Approximation »
Huaian Diao · Rajesh Jayaram · Zhao Song · Wen Sun · David Woodruff -
2019 Poster: Towards a Zero-One Law for Column Subset Selection »
Zhao Song · David Woodruff · Peilin Zhong -
2018 Poster: Robust Subspace Approximation in a Stream »
Roie Levin · Anish Prasad Sevekari · David Woodruff -
2018 Spotlight: Robust Subspace Approximation in a Stream »
Roie Levin · Anish Prasad Sevekari · David Woodruff -
2018 Poster: On Coresets for Logistic Regression »
Alexander Munteanu · Chris Schwiegelshohn · Christian Sohler · David Woodruff -
2018 Spotlight: On Coresets for Logistic Regression »
Alexander Munteanu · Chris Schwiegelshohn · Christian Sohler · David Woodruff -
2018 Poster: Sublinear Time Low-Rank Approximation of Distance Matrices »
Ainesh Bakshi · David Woodruff -
2018 Spotlight: Sublinear Time Low-Rank Approximation of Distance Matrices »
Ainesh Bakshi · David Woodruff -
2017 Poster: Collaborative PAC Learning »
Avrim Blum · Nika Haghtalab · Ariel Procaccia · Mingda Qiao -
2015 Poster: Is Approval Voting Optimal Given Approval Votes? »
Ariel Procaccia · Nisarg Shah -
2014 Poster: Diverse Randomized Agents Vote to Win »
Albert Jiang · Leandro Soriano Marcolino · Ariel Procaccia · Tuomas Sandholm · Nisarg Shah · Milind Tambe -
2014 Poster: Learning Optimal Commitment to Overcome Insecurity »
Avrim Blum · Nika Haghtalab · Ariel Procaccia