Timezone: »
Spotlight
Fast Convergence of Belief Propagation to Global Optima: Beyond Correlation Decay
Frederic Koehler
Belief propagation is a fundamental message-passing algorithm for probabilistic reasoning and inference in graphical models. While it is known to be exact on trees, in most applications belief propagation is run on graphs with cycles. Understanding the behavior of ``loopy'' belief propagation has been a major challenge for researchers in machine learning, and several positive convergence results for BP are known under strong assumptions which imply the underlying graphical model exhibits decay of correlations. We show that under a natural initialization, BP converges quickly to the global optimum of the Bethe free energy for Ising models on arbitrary graphs, as long as the Ising model is \emph{ferromagnetic} (i.e. neighbors prefer to be aligned). This holds even though such models can exhibit long range correlations and may have multiple suboptimal BP fixed points. We also show an analogous result for iterating the (naive) mean-field equations; perhaps surprisingly, both results are ``dimension-free'' in the sense that a constant number of iterations already provides a good estimate to the Bethe/mean-field free energy.
Author Information
Frederic Koehler (MIT)
Related Events (a corresponding poster, oral, or spotlight)
-
2019 Poster: Fast Convergence of Belief Propagation to Global Optima: Beyond Correlation Decay »
Wed. Dec 11th 06:45 -- 08:45 PM Room East Exhibition Hall B + C #174
More from the Same Authors
-
2020 Poster: Learning Some Popular Gaussian Graphical Models without Condition Number Bounds »
Jonathan Kelner · Frederic Koehler · Raghu Meka · Ankur Moitra -
2020 Poster: From Boltzmann Machines to Neural Networks and Back Again »
Surbhi Goel · Adam Klivans · Frederic Koehler -
2020 Spotlight: Learning Some Popular Gaussian Graphical Models without Condition Number Bounds »
Jonathan Kelner · Frederic Koehler · Raghu Meka · Ankur Moitra -
2020 Poster: Classification Under Misspecification: Halfspaces, Generalized Linear Models, and Evolvability »
Sitan Chen · Frederic Koehler · Ankur Moitra · Morris Yau -
2020 Spotlight: Classification Under Misspecification: Halfspaces, Generalized Linear Models, and Evolvability »
Sitan Chen · Frederic Koehler · Ankur Moitra · Morris Yau -
2017 Poster: Information Theoretic Properties of Markov Random Fields, and their Algorithmic Applications »
Linus Hamilton · Frederic Koehler · Ankur Moitra