Timezone: »
In this paper, we propose a general theoretical method for analyzing the risk bound in the presence of adversaries. Specifically, we try to fit the adversarial learning problem into the minimax framework. We first show that the original adversarial learning problem can be transformed into a minimax statistical learning problem by introducing a transport map between distributions. Then, we prove a new risk bound for this minimax problem in terms of covering numbers under a weak version of Lipschitz condition. Our method can be applied to multi-class classification and popular loss functions including the hinge loss and ramp loss. As some illustrative examples, we derive the adversarial risk bounds for SVMs and deep neural networks, and our bounds have two data-dependent terms, which can be optimized for achieving adversarial robustness.
Author Information
Zhuozhuo Tu (The University of Sydney)
Jingwei Zhang (HKUST)
Dacheng Tao (University of Sydney)
Related Events (a corresponding poster, oral, or spotlight)
-
2019 Poster: Theoretical Analysis of Adversarial Learning: A Minimax Approach »
Fri. Dec 13th 01:00 -- 03:00 AM Room East Exhibition Hall B + C #238
More from the Same Authors
-
2020 Poster: SCOP: Scientific Control for Reliable Neural Network Pruning »
Yehui Tang · Yunhe Wang · Yixing Xu · Dacheng Tao · Chunjing XU · Chao Xu · Chang Xu -
2020 Poster: Part-dependent Label Noise: Towards Instance-dependent Label Noise »
Xiaobo Xia · Tongliang Liu · Bo Han · Nannan Wang · Mingming Gong · Haifeng Liu · Gang Niu · Dacheng Tao · Masashi Sugiyama -
2020 Poster: Auto Learning Attention »
Benteng Ma · Jing Zhang · Yong Xia · Dacheng Tao -
2020 Spotlight: Part-dependent Label Noise: Towards Instance-dependent Label Noise »
Xiaobo Xia · Tongliang Liu · Bo Han · Nannan Wang · Mingming Gong · Haifeng Liu · Gang Niu · Dacheng Tao · Masashi Sugiyama -
2020 Poster: Searching for Low-Bit Weights in Quantized Neural Networks »
Zhaohui Yang · Yunhe Wang · Kai Han · Chunjing XU · Chao Xu · Dacheng Tao · Chang Xu -
2020 Poster: Hard Example Generation by Texture Synthesis for Cross-domain Shape Similarity Learning »
Huan Fu · Shunming Li · Rongfei Jia · Mingming Gong · Binqiang Zhao · Dacheng Tao -
2020 Poster: Video Frame Interpolation without Temporal Priors »
Youjian Zhang · Chaoyue Wang · Dacheng Tao -
2020 Poster: Domain Generalization via Entropy Regularization »
Shanshan Zhao · Mingming Gong · Tongliang Liu · Huan Fu · Dacheng Tao -
2019 Poster: Category Anchor-Guided Unsupervised Domain Adaptation for Semantic Segmentation »
Qiming ZHANG · Jing Zhang · Wei Liu · Dacheng Tao -
2019 Poster: LIIR: Learning Individual Intrinsic Reward in Multi-Agent Reinforcement Learning »
Yali Du · Lei Han · Meng Fang · Ji Liu · Tianhong Dai · Dacheng Tao -
2019 Poster: Learn, Imagine and Create: Text-to-Image Generation from Prior Knowledge »
Tingting Qiao · Jing Zhang · Duanqing Xu · Dacheng Tao -
2019 Poster: Control Batch Size and Learning Rate to Generalize Well: Theoretical and Empirical Evidence »
Fengxiang He · Tongliang Liu · Dacheng Tao -
2019 Poster: Positive-Unlabeled Compression on the Cloud »
Yixing Xu · Yunhe Wang · Hanting Chen · Kai Han · Chunjing XU · Dacheng Tao · Chang Xu -
2019 Poster: Learning from Bad Data via Generation »
Tianyu Guo · Chang Xu · Boxin Shi · Chao Xu · Dacheng Tao -
2019 Poster: Likelihood-Free Overcomplete ICA and Applications In Causal Discovery »
Chenwei DING · Mingming Gong · Kun Zhang · Dacheng Tao -
2019 Spotlight: Likelihood-Free Overcomplete ICA and Applications In Causal Discovery »
Chenwei DING · Mingming Gong · Kun Zhang · Dacheng Tao -
2018 Poster: Dual Swap Disentangling »
Zunlei Feng · Xinchao Wang · Chenglong Ke · An-Xiang Zeng · Dacheng Tao · Mingli Song