Timezone: »
Author Information
Lili Yu (ASAPP Inc)
Aleksei Kroshnin (Institute for Information Transmission Problems)
Alex Delalande (CentraleSupélec)
Andrew Carr (Brigham Young University)
Anthony Tompkins (The University of Sydney)
Aram-Alexandre Pooladian (McGill University)
PhD student at the CDS at NYU; interested in statistical optimal transport and optimization theory.
Arnaud Robert (Center for Mathematical Modeling, University of Chile)
Ashok Vardhan Makkuva (University of Illinois at Urbana-Champaign)
Aude Genevay (Ecole Normale Supérieure)
Bangjie Liu (Citadel)
Bo Zeng (pitt)
Charlie Frogner (MIT)
Elsa Cazelles (Center for Mathematical Modeling, University of Chile)
Esteban G Tabak (New York University, Courant Institute)
Fabio Ramos (University of Sydney)
François-Pierre PATY (ENSAE Paris)
Georgios Balikas (Salesforce Inc)
Giulio Trigila (Baruch College, CUNY)
Hao Wang (Citadel)
Hinrich Mahler (TU Braunschweig)
Jared Nielsen (Brigham Young University)
Karim Lounici (Ecole Polytechnique)
Kyle Swanson (ASAPP, Inc.)

Kyle Swanson is a PhD student at Stanford University advised by James Zou. He is interested in applications of machine learning to biology, medicine, and drug discovery.
Mukul Bhutani (Carnegie Mellon University)
Pierre Bréchet (Technical University Munich)
Piotr Indyk (MIT)
samuel cohen (University College London)
Samuel is a first-year PhD student in Machine Learning at University College London (UCL), supervised by Professor Marc Deisenroth. He graduated with an MSc in Statistical Science from Oxford University and a BSc in Mathematics from Imperial College London. His main areas of interest are Reinforcement Learning, Gaussian Processes, Optimal Transport, and Deep Generative Modeling.
Stefanie Jegelka (MIT)
Stefanie Jegelka is an X-Consortium Career Development Assistant Professor in the Department of EECS at MIT. She is a member of the Computer Science and AI Lab (CSAIL), the Center for Statistics and an affiliate of the Institute for Data, Systems and Society and the Operations Research Center. Before joining MIT, she was a postdoctoral researcher at UC Berkeley, and obtained her PhD from ETH Zurich and the Max Planck Institute for Intelligent Systems. Stefanie has received a Sloan Research Fellowship, an NSF CAREER Award, a DARPA Young Faculty Award, the German Pattern Recognition Award and a Best Paper Award at the International Conference for Machine Learning (ICML). Her research interests span the theory and practice of algorithmic machine learning.
Tao Wu (Technical University of Munich)
Thibault Sejourne (DMA, ENS, Paris)
After graduating from Ecole Polytechnique, I enrolled into the master’s degree MVA (“Mathematiques, Visison, Apprentissage”) of Ecole Normale Superieure Paris-Saclay. I am now a second year PhD candidate at ENS Paris under the supervision of Gabriel Peyré and François-Xavier Vialard. I am currently working on the applications of the theory of Optimal Transport for Machine learning applications.
Tudor Manole (Carnegie Mellon University)
Wenjun Zhao (Courant Institute of Mathematical Sciences)
Wenlin Wang (Duke Univeristy)
Wenqi Wang (Facebook)
Yonatan Dukler (UCLA)
I am a second year PhD student in Department of Mathematics at UCLA working under the joint supervision of [Guido Montufar](http://www.math.ucla.edu/~montufar/) and [Andrea Bertozzi](http://www.math.ucla.edu/~bertozzi/). My research is in the field of machine learning, applied mathematics, high dimensional statistics and specifically in their intersection. I am very fortunate to be supported by the NSF Graduate Research Fellowship (NSF GRFP). Before my PhD I was studying (pure) mathematics at UCLA with interest in analysis. I received my BS and MA concurrently from UCLA under the Departmental Scholar Program.
Zihao Wang (Tsinghua University)
Chaosheng Dong (University of Pittsburgh)
More from the Same Authors
-
2021 Spotlight: Measuring Generalization with Optimal Transport »
Ching-Yao Chuang · Youssef Mroueh · Kristjan Greenewald · Antonio Torralba · Stefanie Jegelka -
2021 : Faster Unbalanced Optimal Transport: Translation invariant Sinkhorn and 1-D Frank-Wolfe »
Thibault Sejourne · Francois-Xavier Vialard · Gabriel Peyré -
2021 : Faster Unbalanced Optimal Transport: Translation invariant Sinkhorn and 1-D Frank-Wolfe »
Thibault Sejourne · Francois-Xavier Vialard · Gabriel Peyré -
2022 : Predicting Immune Escape with Pretrained Protein Language Model Embeddings »
Kyle Swanson · Howard Chang · James Zou -
2022 : Predicting Immune Escape with Pretrained Protein Language Model Embeddings »
Kyle Swanson · Howard Chang · James Zou -
2022 : Variance Reduction in Off-Policy Deep Reinforcement Learning using Spectral Normalization »
Payal Bawa · Rafael Oliveira · Fabio Ramos -
2022 : Learning Successor Feature Representations to Train Robust Policies for Multi-task Learning »
Melissa Mozifian · Dieter Fox · David Meger · Fabio Ramos · Animesh Garg -
2022 Workshop: 5th Robot Learning Workshop: Trustworthy Robotics »
Alex Bewley · Roberto Calandra · Anca Dragan · Igor Gilitschenski · Emily Hannigan · Masha Itkina · Hamidreza Kasaei · Jens Kober · Danica Kragic · Nathan Lambert · Julien PEREZ · Fabio Ramos · Ransalu Senanayake · Jonathan Tompson · Vincent Vanhoucke · Markus Wulfmeier -
2022 Spotlight: Batch Bayesian optimisation via density-ratio estimation with guarantees »
Rafael Oliveira · Louis Tiao · Fabio Ramos -
2022 Poster: Faster Linear Algebra for Distance Matrices »
Piotr Indyk · Sandeep Silwal -
2022 Poster: (Optimal) Online Bipartite Matching with Degree Information »
Anders Aamand · Justin Chen · Piotr Indyk -
2022 Poster: Batch Bayesian optimisation via density-ratio estimation with guarantees »
Rafael Oliveira · Louis Tiao · Fabio Ramos -
2022 Poster: Exponentially Improving the Complexity of Simulating the Weisfeiler-Lehman Test with Graph Neural Networks »
Anders Aamand · Justin Chen · Piotr Indyk · Shyam Narayanan · Ronitt Rubinfeld · Nicholas Schiefer · Sandeep Silwal · Tal Wagner -
2021 : Invited talk 1 »
Stefanie Jegelka -
2021 Poster: Scaling up Continuous-Time Markov Chains Helps Resolve Underspecification »
Alkis Gotovos · Rebekka Burkholz · John Quackenbush · Stefanie Jegelka -
2021 Poster: Can contrastive learning avoid shortcut solutions? »
Joshua Robinson · Li Sun · Ke Yu · Kayhan Batmanghelich · Stefanie Jegelka · Suvrit Sra -
2021 Poster: What training reveals about neural network complexity »
Andreas Loukas · Marinos Poiitis · Stefanie Jegelka -
2021 Poster: Few-Shot Data-Driven Algorithms for Low Rank Approximation »
Piotr Indyk · Tal Wagner · David Woodruff -
2021 Poster: Large-Scale Wasserstein Gradient Flows »
Petr Mokrov · Alexander Korotin · Lingxiao Li · Aude Genevay · Justin Solomon · Evgeny Burnaev -
2021 Poster: Measuring Generalization with Optimal Transport »
Ching-Yao Chuang · Youssef Mroueh · Kristjan Greenewald · Antonio Torralba · Stefanie Jegelka -
2021 Poster: The Unbalanced Gromov Wasserstein Distance: Conic Formulation and Relaxation »
Thibault Sejourne · Francois-Xavier Vialard · Gabriel Peyré -
2021 Poster: Do Neural Optimal Transport Solvers Work? A Continuous Wasserstein-2 Benchmark »
Alexander Korotin · Lingxiao Li · Aude Genevay · Justin Solomon · Alexander Filippov · Evgeny Burnaev -
2020 : Invited Talk - "RL with Sim2Real in the Loop / Online Domain Adaptation for Mapping" »
Fabio Ramos · Anthony Tompkins -
2020 : Discussion Panel »
Pete Florence · Dorsa Sadigh · Carolina Parada · Jeannette Bohg · Roberto Calandra · Peter Stone · Fabio Ramos -
2020 : Bayesian optimization by density ratio estimation »
Louis Tiao · Aaron Klein · Cedric Archambeau · Edwin Bonilla · Matthias W Seeger · Fabio Ramos -
2020 Poster: Sparse Spectrum Warped Input Measures for Nonstationary Kernel Learning »
Anthony Tompkins · Rafael Oliveira · Fabio Ramos -
2020 Poster: Testing Determinantal Point Processes »
Khashayar Gatmiry · Maryam Aliakbarpour · Stefanie Jegelka -
2020 Spotlight: Testing Determinantal Point Processes »
Khashayar Gatmiry · Maryam Aliakbarpour · Stefanie Jegelka -
2020 Poster: Continuous Regularized Wasserstein Barycenters »
Lingxiao Li · Aude Genevay · Mikhail Yurochkin · Justin Solomon -
2020 Poster: IDEAL: Inexact DEcentralized Accelerated Augmented Lagrangian Method »
Yossi Arjevani · Joan Bruna · Bugra Can · Mert Gurbuzbalaban · Stefanie Jegelka · Hongzhou Lin -
2020 Spotlight: IDEAL: Inexact DEcentralized Accelerated Augmented Lagrangian Method »
Yossi Arjevani · Joan Bruna · Bugra Can · Mert Gurbuzbalaban · Stefanie Jegelka · Hongzhou Lin -
2019 : Invited Talk - Stefanie Jegelka - Set Representations in Graph Neural Networks and Reasoning »
Stefanie Jegelka -
2019 : Poster Session »
Gergely Flamich · Shashanka Ubaru · Charles Zheng · Josip Djolonga · Kristoffer Wickstrøm · Diego Granziol · Konstantinos Pitas · Jun Li · Robert Williamson · Sangwoong Yoon · Kwot Sin Lee · Julian Zilly · Linda Petrini · Ian Fischer · Zhe Dong · Alexander Alemi · Bao-Ngoc Nguyen · Rob Brekelmans · Tailin Wu · Aditya Mahajan · Alexander Li · Kirankumar Shiragur · Yair Carmon · Linara Adilova · SHIYU LIU · Bang An · Sanjeeb Dash · Oktay Gunluk · Arya Mazumdar · Mehul Motani · Julia Rosenzweig · Michael Kamp · Marton Havasi · Leighton P Barnes · Zhengqing Zhou · Yi Hao · Dylan Foster · Yuval Benjamini · Nati Srebro · Michael Tschannen · Paul Rubenstein · Sylvain Gelly · John Duchi · Aaron Sidford · Robin Ru · Stefan Zohren · Murtaza Dalal · Michael A Osborne · Stephen J Roberts · Moses Charikar · Jayakumar Subramanian · Xiaodi Fan · Max Schwarzer · Nicholas Roberts · Simon Lacoste-Julien · Vinay Prabhu · Aram Galstyan · Greg Ver Steeg · Lalitha Sankar · Yung-Kyun Noh · Gautam Dasarathy · Frank Park · Ngai-Man (Man) Cheung · Ngoc-Trung Tran · Linxiao Yang · Ben Poole · Andrea Censi · Tristan Sylvain · R Devon Hjelm · Bangjie Liu · Jose Gallego-Posada · Tyler Sypherd · Kai Yang · Jan Nikolas Morshuis -
2019 : Alexei Kroshnin »
Aleksei Kroshnin -
2019 : Poster Session »
Jonathan Scarlett · Piotr Indyk · Ali Vakilian · Adrian Weller · Partha P Mitra · Benjamin Aubin · Bruno Loureiro · Florent Krzakala · Lenka Zdeborová · Kristina Monakhova · Joshua Yurtsever · Laura Waller · Hendrik Sommerhoff · Michael Moeller · Rushil Anirudh · Shuang Qiu · Xiaohan Wei · Zhuoran Yang · Jayaraman Thiagarajan · Salman Asif · Michael Gillhofer · Johannes Brandstetter · Sepp Hochreiter · Felix Petersen · Dhruv Patel · Assad Oberai · Akshay Kamath · Sushrut Karmalkar · Eric Price · Ali Ahmed · Zahra Kadkhodaie · Sreyas Mohan · Eero Simoncelli · Carlos Fernandez-Granda · Oscar Leong · Wesam Sakla · Rebecca Willett · Stephan Hoyer · Jascha Sohl-Dickstein · Sam Greydanus · Gauri Jagatap · Chinmay Hegde · Michael Kellman · Jonathan Tamir · Nouamane Laanait · Ousmane Dia · Mirco Ravanelli · Jonathan Binas · Negar Rostamzadeh · Shirin Jalali · Tiantian Fang · Alex Schwing · Sébastien Lachapelle · Philippe Brouillard · Tristan Deleu · Simon Lacoste-Julien · Stella Yu · Arya Mazumdar · Ankit Singh Rawat · Yue Zhao · Jianshu Chen · Xiaoyang Li · Hubert Ramsauer · Gabrio Rizzuti · Nikolaos Mitsakos · Dingzhou Cao · Thomas Strohmer · Yang Li · Pei Peng · Gregory Ongie -
2019 : Poster Session #2 »
Yunzhu Li · Peter Meltzer · Jianing Sun · Guillaume SALHA · Marin Vlastelica Pogančić · Chia-Cheng Liu · Fabrizio Frasca · Marc-Alexandre Côté · Vikas Verma · Abdulkadir CELIKKANAT · Pierluca D'Oro · Priyesh Vijayan · Maria Schuld · Petar Veličković · Kshitij Tayal · Yulong Pei · Hao Xu · Lei Chen · Pengyu Cheng · Ines Chami · Dongkwan Kim · Guilherme Gomes · Lukasz Maziarka · Jessica Hoffmann · Ron Levie · Antonia Gogoglou · Shunwang Gong · Federico Monti · Wenlin Wang · Yan Leng · Salvatore Vivona · Daniel Flam-Shepherd · Chester Holtz · Li Zhang · MAHMOUD KHADEMI · I-Chung Hsieh · Aleksandar Stanić · Ziqiao Meng · Yuhang Jiao -
2019 : Aude Genevay »
Aude Genevay -
2019 : Charlie Frogner »
Charlie Frogner -
2019 : Learning-Based Low-Rank Approximations »
Piotr Indyk -
2019 : Stefanie Jegelka »
Stefanie Jegelka -
2019 Poster: Distributionally Robust Optimization and Generalization in Kernel Methods »
Matt Staib · Stefanie Jegelka -
2019 Poster: Flexible Modeling of Diversity with Strongly Log-Concave Distributions »
Joshua Robinson · Suvrit Sra · Stefanie Jegelka -
2019 Poster: Estimating Entropy of Distributions in Constant Space »
Jayadev Acharya · Sourbh Bhadane · Piotr Indyk · Ziteng Sun -
2019 Poster: Improving Textual Network Learning with Variational Homophilic Embeddings »
Wenlin Wang · Chenyang Tao · Zhe Gan · Guoyin Wang · Liqun Chen · Xinyuan Zhang · Ruiyi Zhang · Qian Yang · Ricardo Henao · Lawrence Carin -
2019 Poster: Ouroboros: On Accelerating Training of Transformer-Based Language Models »
Qian Yang · Zhouyuan Huo · Wenlin Wang · Lawrence Carin -
2019 Poster: Learning-Based Low-Rank Approximations »
Piotr Indyk · Ali Vakilian · Yang Yuan -
2019 Poster: Certified Adversarial Robustness with Additive Noise »
Bai Li · Changyou Chen · Wenlin Wang · Lawrence Carin -
2019 Poster: Space and Time Efficient Kernel Density Estimation in High Dimensions »
Arturs Backurs · Piotr Indyk · Tal Wagner -
2018 : Poster Session »
Sujay Sanghavi · Vatsal Shah · Yanyao Shen · Tianchen Zhao · Yuandong Tian · Tomer Galanti · Mufan Li · Gilad Cohen · Daniel Rothchild · Aristide Baratin · Devansh Arpit · Vagelis Papalexakis · Michael Perlmutter · Ashok Vardhan Makkuva · Pim de Haan · Yingyan Lin · Wanmo Kang · Cheolhyoung Lee · Hao Shen · Sho Yaida · Dan Roberts · Nadav Cohen · Philippe Casgrain · Dejiao Zhang · Tengyu Ma · Avinash Ravichandran · Julian Emilio Salazar · Bo Li · Davis Liang · Christopher Wong · Glen Bigan Mbeng · Animesh Garg -
2018 : Fabio Ramos (Uni. of Sydney): Learning and Planning in Spatial-Temporal Data »
Fabio Ramos -
2018 : Coffee Break 1 (Posters) »
Ananya Kumar · Siyu Huang · Huazhe Xu · Michael Janner · Parth Chadha · Nils Thuerey · Peter Lu · Maria Bauza · Anthony Tompkins · Guanya Shi · Thomas Baumeister · André Ofner · Zhi-Qi Cheng · Yuping Luo · Deepika Bablani · Jeroen Vanbaar · Kartic Subr · Tatiana López-Guevara · Devesh Jha · Fabian Fuchs · Stefano Rosa · Alison Pouplin · Alex Ray · Qi Liu · Eric Crawford -
2018 Workshop: Modeling and decision-making in the spatiotemporal domain »
Ransalu Senanayake · Neal Jean · Fabio Ramos · Girish Chowdhary -
2018 Poster: Generalized Inverse Optimization through Online Learning »
Chaosheng Dong · Yiran Chen · Bo Zeng -
2018 Poster: ResNet with one-neuron hidden layers is a Universal Approximator »
Hongzhou Lin · Stefanie Jegelka -
2018 Spotlight: ResNet with one-neuron hidden layers is a Universal Approximator »
Hongzhou Lin · Stefanie Jegelka -
2018 Poster: Provable Variational Inference for Constrained Log-Submodular Models »
Josip Djolonga · Stefanie Jegelka · Andreas Krause -
2018 Poster: Integrated accounts of behavioral and neuroimaging data using flexible recurrent neural network models »
Amir Dezfouli · Richard Morris · Fabio Ramos · Peter Dayan · Bernard Balleine -
2018 Oral: Integrated accounts of behavioral and neuroimaging data using flexible recurrent neural network models »
Amir Dezfouli · Richard Morris · Fabio Ramos · Peter Dayan · Bernard Balleine -
2018 Poster: Adversarially Robust Optimization with Gaussian Processes »
Ilija Bogunovic · Jonathan Scarlett · Stefanie Jegelka · Volkan Cevher -
2018 Spotlight: Adversarially Robust Optimization with Gaussian Processes »
Ilija Bogunovic · Jonathan Scarlett · Stefanie Jegelka · Volkan Cevher -
2018 Poster: Exponentiated Strongly Rayleigh Distributions »
Zelda Mariet · Suvrit Sra · Stefanie Jegelka -
2018 Poster: Distilled Wasserstein Learning for Word Embedding and Topic Modeling »
Hongteng Xu · Wenlin Wang · Wei Liu · Lawrence Carin -
2018 Tutorial: Negative Dependence, Stable Polynomials, and All That »
Suvrit Sra · Stefanie Jegelka -
2017 : Contributed Talks 1 »
Cinjon Resnick · Ying Wen · Stephan Zheng · Mukul Bhutani · Edward Choi -
2017 : Invited talk: Scaling Bayesian Optimization in High Dimensions »
Stefanie Jegelka -
2017 : Approximate inference with Wasserstein gradient flows (with T. Poggio) »
Charlie Frogner -
2017 : Data-dependent methods for similarity search in high dimensions »
Piotr Indyk -
2017 Workshop: Discrete Structures in Machine Learning »
Yaron Singer · Jeff A Bilmes · Andreas Krause · Stefanie Jegelka · Amin Karbasi -
2017 Poster: Practical Data-Dependent Metric Compression with Provable Guarantees »
Piotr Indyk · Ilya Razenshteyn · Tal Wagner -
2017 Poster: Parallel Streaming Wasserstein Barycenters »
Matt Staib · Sebastian Claici · Justin Solomon · Stefanie Jegelka -
2017 Poster: On the Fine-Grained Complexity of Empirical Risk Minimization: Kernel Methods and Neural Networks »
Arturs Backurs · Piotr Indyk · Ludwig Schmidt -
2017 Poster: Polynomial time algorithms for dual volume sampling »
Chengtao Li · Stefanie Jegelka · Suvrit Sra -
2016 : Submodular Optimization and Nonconvexity »
Stefanie Jegelka -
2016 Workshop: Nonconvex Optimization for Machine Learning: Theory and Practice »
Hossein Mobahi · Anima Anandkumar · Percy Liang · Stefanie Jegelka · Anna Choromanska -
2016 Poster: Fast Mixing Markov Chains for Strongly Rayleigh Measures, DPPs, and Constrained Sampling »
Chengtao Li · Suvrit Sra · Stefanie Jegelka -
2016 Poster: Fast recovery from a union of subspaces »
Chinmay Hegde · Piotr Indyk · Ludwig Schmidt -
2016 Poster: Spatio-Temporal Hilbert Maps for Continuous Occupancy Representation in Dynamic Environments »
Ransalu Senanayake · Lionel Ott · Simon O'Callaghan · Fabio Ramos -
2016 Poster: Cooperative Graphical Models »
Josip Djolonga · Stefanie Jegelka · Sebastian Tschiatschek · Andreas Krause -
2015 Poster: Practical and Optimal LSH for Angular Distance »
Alexandr Andoni · Piotr Indyk · Thijs Laarhoven · Ilya Razenshteyn · Ludwig Schmidt -
2015 Poster: Learning with a Wasserstein Loss »
Charlie Frogner · Chiyuan Zhang · Hossein Mobahi · Mauricio Araya · Tomaso Poggio -
2014 Workshop: Optimal Transport and Machine Learning »
Marco Cuturi · Gabriel Peyré · Justin Solomon · Alexander Barvinok · Piotr Indyk · Robert McCann · Adam Oberman -
2014 Workshop: Discrete Optimization in Machine Learning »
Jeffrey A Bilmes · Andreas Krause · Stefanie Jegelka · S Thomas McCormick · Sebastian Nowozin · Yaron Singer · Dhruv Batra · Volkan Cevher -
2014 Poster: Parallel Double Greedy Submodular Maximization »
Xinghao Pan · Stefanie Jegelka · Joseph Gonzalez · Joseph K Bradley · Michael Jordan -
2014 Poster: Submodular meets Structured: Finding Diverse Subsets in Exponentially-Large Structured Item Sets »
Adarsh Prasad · Stefanie Jegelka · Dhruv Batra -
2014 Spotlight: Submodular meets Structured: Finding Diverse Subsets in Exponentially-Large Structured Item Sets »
Adarsh Prasad · Stefanie Jegelka · Dhruv Batra -
2014 Poster: On Integrated Clustering and Outlier Detection »
Lionel Ott · Linsey Pang · Fabio Ramos · Sanjay Chawla -
2014 Poster: On the Convergence Rate of Decomposable Submodular Function Minimization »
Robert Nishihara · Stefanie Jegelka · Michael Jordan -
2014 Poster: Weakly-supervised Discovery of Visual Pattern Configurations »
Hyun Oh Song · Yong Jae Lee · Stefanie Jegelka · Trevor Darrell -
2013 Workshop: Discrete Optimization in Machine Learning: Connecting Theory and Practice »
Stefanie Jegelka · Andreas Krause · Pradeep Ravikumar · Kazuo Murota · Jeffrey A Bilmes · Yisong Yue · Michael Jordan -
2013 Poster: Optimistic Concurrency Control for Distributed Unsupervised Learning »
Xinghao Pan · Joseph Gonzalez · Stefanie Jegelka · Tamara Broderick · Michael Jordan -
2013 Poster: Reflection methods for user-friendly submodular optimization »
Stefanie Jegelka · Francis Bach · Suvrit Sra -
2013 Poster: Curvature and Optimal Algorithms for Learning and Minimizing Submodular Functions »
Rishabh K Iyer · Stefanie Jegelka · Jeffrey A Bilmes -
2012 Workshop: Discrete Optimization in Machine Learning (DISCML): Structure and Scalability »
Stefanie Jegelka · Andreas Krause · Jeffrey A Bilmes · Pradeep Ravikumar -
2011 Poster: Fast approximate submodular minimization »
Stefanie Jegelka · Hui Lin · Jeffrey A Bilmes -
2010 Workshop: Discrete Optimization in Machine Learning: Structures, Algorithms and Applications »
Andreas Krause · Pradeep Ravikumar · Jeffrey A Bilmes · Stefanie Jegelka -
2007 Spotlight: Discovering Weakly-Interacting Factors in a Complex Stochastic Process »
Charlie Frogner · Avi Pfeffer -
2007 Poster: Discovering Weakly-Interacting Factors in a Complex Stochastic Process »
Charlie Frogner · Avi Pfeffer