Timezone: »
Author Information
Jindong Gu (The University of Munich & Siemens)
Alice Xiang (Partnership on AI)
Atoosa Kasirzadeh (Australian National University and University of Toronto)
I am an applied mathematician (PhD in Operations Research) and a philosopher (PhD candidate in philosophy), working on the ethics and philosophy of machine learning and data science.
Zhiwei Han (fortiss GmbH)
Omar U. Florez (Capital One)
Senior Research Manager in Conversational AI at Capital One
Frederik Harder (Max Planck Institute for Intelligent Systems)
An-phi Nguyen (ETH Zurich, IBM Research Zurich)
Amir Hossein Akhavan Rahnama (KTH Royal Institute of Technology)
Michele Donini (Amazon)
Dylan Slack (UC Irvine)
Junaid Ali (Max Planck Institute for Software Systems)
Paramita Koley (Indian Institute of Technology Kharagpur)
Michiel Bakker (MIT)
Anna Hilgard (Harvard University)
Hailey James (Harvard College)
UC San Diego Phd Student in Machine Learning, studying topics related to explainability, fairness, AI interventions, and human-AI interaction
Gonzalo Ramos (Microsoft Research)
Jialin Lu (Simon Fraser University)
MSc student at Simon Fraser University with Prof. Martin Ester. I am generally interested in interpretability: interpret a complex prediction system into a small and interpretable structure. Recently I got especially interested in integrating symbolic methods with scalable deep learning approaches.
Jingying Yang (Partnership on AI)
Margarita Boyarskaya (NYU)
Martin Pawelczyk (University of Tübingen)
# Academic Exp ## Phd Student at Uni of Tübingen, Germany: ## MSc Statistics, London School of Economics, UK ## MSc Econometrics, University of Edinburgh, UK ## BSc Economics, University of Cologne, Germany # Work Exp ## ML intern at SDG financing Lab, OECD, Paris ## Working student at r2b energy consulting, Cologne
Kacper Sokol (University of Bristol)
Mimansa Jaiswal (University of Michigan)
I am a 3rd year PhD student in computer science at University of Michigan. I work with natural language and speech processing for social application domain (affect, emotion, empathy). My work is mostly focussed on distribution robustness (domain variability, confounding variables, annotation paradigms), interpretation (error analysis, understanding why a model predicts a particular class, when is it successful/wrong?) and privacy & security (black box adversarial examples, mitigating demographic variable/membership leakage).
Umang Bhatt (University of Cambridge)
David Alvarez-Melis (MIT)
Aditya Grover (Stanford University)
Charles Marx (Haverford College)
Mengjiao (Sherry) Yang (Google)
Jingyan Wang (Carnegie Mellon University)
Gökhan Çapan (Boğaziçi University)
Hanchen Wang (University of Cambridge)
Steffen Grünewälder (Lancaster University)
Moein Khajehnejad (Max Planck Institute For Software Systems)
Gourab Patro (Indian Institute of Technology Kharagpur)
## About Me I am a PhD scholar (TCS research fellow) in the department of [Computer Science and Engineering](http://cse.iitkgp.ac.in) at [IIT Kharagpur](http://www.iitkgp.ac.in/),India. I work under the supervision of [Prof. Niloy Ganguly](http://www.facweb.iitkgp.ernet.in/~niloy/). My research area is Information Retrieval and Data Mining, and my research interests fall in bias & fairness aspects of AIs. I am currently a part of [Complex Networks Research Group](http://www.cnergres.iitkgp.ac.in/) at [IIT Kharagpur](http://www.iitkgp.ac.in/). <br> Please find me CV [**here**](https://drive.google.com/file/d/1QN9Gq_KkRgum0f1LhtRhaM6zZGlXgNac/view?usp=sharing). ## Publications * **Incremental Fairness in Two-Sided Market Platforms: On Updating Recommendations Fairly**<br> Short version accepted in HCML workshop, at NeurIPS 2019, Vancouver, Canada.<br> [**arXiv**](https://arxiv.org/abs/1909.10005) * **Can Location-Based Searches Create Exposure Bias ?**<br> FATES on the Web 2019 co-located with The Web Conference 2019 (WWW), San Francisco, USA * **Equality of Voice: Towards Fair Representation in Crowdsourced Top-K Recommendations**<br> ACM FAT* Conference, 2019, Atlanta, Georgia, USA<br> [**PDF**](http://cse.iitkgp.ac.in/~gourabkp/fat2019.pdf) [**arXiv**](https://arxiv.org/abs/1811.08690) [**Paper**](https://doi.org/10.1145/3287560.3287570) ## Education * **Indian Institute of Technology Kharagpur ([IITKGP](http://iitkgp.ac.in/)) _From 2019_**<br> PhD Scholar, Department of Computer Science and Engineering<br> * **Indian Institute of Technology Kharagpur ([IITKGP](http://iitkgp.ac.in/)) _2018-19_**<br> Graduate (PhD) Student, Department of Computer Science and Engineering<br> * **Indian Institute of Technology Jodhpur ([IITJ](http://iitj.ac.in/)) _2012-2016_**<br> Bachelor of Technology in System Science - Computer Science Minor Option<br> _GPI 8.58/10, **2nd Topper in the department**_ * **Higher Secondary Board _2011_**<br> Council of Higher Secondary Education,Odisha<br> _Score 91.16 %, **6th Topper in the State of Odisha**_ * **Secondary Board _2009_**<br> Board of Secondary Education,Odisha<br> _Score 91.5 %_ ## Experience * **Max Planck Institute for Software Systems (MPI-SWS), Saarbrucken, Germany _Mar'19-May'19_**<br> Visiting Scholar _(Under Prof. Krishna Gummadi)_<br> * **IIT Kharagpur _Oct'17-Dec'17_**<br> Junior Research Fellow, Computer Science and Engineering _(Under Prof. Niloy Ganguly)_<br> * **Steelwedge Software Inc _Jul'16-Aug'17_**<br> **_(Now a part of E2open LLC,Insight Venture Partners)_**<br> Associate, S&OP Consulting and Implementation ## Awards and Achievements * **TCS Research Fellowship _2019_**<br> TCS Research Fellowship Program for Computer Science Research * **Finalist at Qualcomm Innovation Fellowship _2018_**<br> One of the finalists of QInF-India 2018 * **TNT-LatentView _2015_**<br> One of the winners of "The Number Thing",a Data Science Competition by LatentView * **Academic Distinction _2014_**<br> Got Academic Distinction from The Director of IIT Jodhpur * **State Higher Secondary Board Topper _2011_**<br> Secured 6th Rank in the State (Odisha) 12th Board Examination ## My Presentation Slides * [18th July 2019](https://docs.google.com/presentation/d/132OudCPjfCwqqvSygPO423EUvLwQwye0eDbqE6HS5MA/edit?usp=sharing), Information Retrieval Class, IIT Kharagpur * [4th July 2019](https://docs.google.com/presentation/d/1OnhRAaJZbDBqv1J3G3az4hr_gIA1mUlwz5URMeczMws/edit?usp=sharing), CNeRG Reading Group<br> "Fairness-Aware Ranking in Search & Recommendation Systems with Application to LinkedIn Talent Search" by Geyik et al. in KDD 2019 * [14th April 2019](https://docs.google.com/presentation/d/1dVlT8yS5FuH_Wa68-74udUnnAoYqBy1am-ayCxj5uYk/edit?usp=sharing), FATES on The Web (WWW)<br> "Exposure Bias in Two-Sided Platforms: The Role of Location-Based Searches" * [2nd December 2018](https://docs.google.com/presentation/d/1OOhUtVN_FJYedQpEfLa_yOhBRE-z77O_Qx9hyi9TLXM/edit?usp=sharing), CNeRG Retreat 2018, Chandipur, Odisha<br> "Equality of Voice: Towards Fair Representation in Crowdsourced Top-K Recommendations" in FAT* 2019 * [12th July 2018](https://docs.google.com/presentation/d/1vtUDyxgxqJA-SULhaIv84_28DLbmTqlMFvJJW7ZGGiQ/edit?usp=sharing), CNeRG Reading Group<br> "Unlearn What You Have Learned: Adaptive Crowd Teaching with Exponentially Decayed Memory Learners" by Zhou et al. in KDD 2018 * [13th April 2018](https://docs.google.com/presentation/d/1OV9nfPFF83ObMEjGR7Mu1fN11r_CaLdO0VvtBsnYMRE/edit?usp=sharing), Intelligent Systems Class Presentation<br> "Recommendation Independence" by Kamishima et al. in FAT* 2018 ## Certifications * **KPMG _2015_**<br> Green Belt Six SIgma _(License:CH042015125)_ ## Significant Courseworks Scalable Data Mining, Speech and Natural Language Processing, Information Retrieval, Deep Learning, Intelligent Systems, Complex Networks, Large Scale Numerical Simulations, Performance Modeling in Computer Networks, Pattern Recognition and Machine Learning, Socio-Economic Networks and Business Dynamics, Financial Engineering, OR Optimization, Game Theory, Mathematical Macro-Economics, Embedded Systems, Dynamical Systems, Control Systems, Computer Organisation, Computer Networks, Compiler Design and Analysis, Database Systems, Algorithm Design and Analysis, Data Structure and Algorithms ## Contact _Email:_ patrogourab@gmail.com<br> _Ph:_ +91 8386837425
Russell Kunes (Columbia University)
PhD student in statistics at Columbia
Samuel Deng (Columbia University)
Yuanting Liu (fortiss GmbH)
Luca Oneto (University of Genoa)
Mengze Li (Carnegie Mellon University)
Thomas Weber (LMU Munich)
Stefan Matthes (fortiss GmbH)
Duy Patrick Tu (MIT Media Lab)
More from the Same Authors
-
2020 : Overcoming Failures of Imagination in AI Infused System Development and Deployment »
Margarita Boyarskaya · Alexandra Olteanu · Kate Crawford -
2021 : CARLA: A Python Library to Benchmark Algorithmic Recourse and Counterfactual Explanation Algorithms »
Martin Pawelczyk · Sascha Bielawski · Johan Van den Heuvel · Tobias Richter · Gjergji Kasneci -
2021 Spotlight: Iterative Teaching by Label Synthesis »
Weiyang Liu · Zhen Liu · Hanchen Wang · Liam Paull · Bernhard Schölkopf · Adrian Weller -
2021 Spotlight: Combiner: Full Attention Transformer with Sparse Computation Cost »
Hongyu Ren · Hanjun Dai · Zihang Dai · Mengjiao (Sherry) Yang · Jure Leskovec · Dale Schuurmans · Bo Dai -
2021 : Defuse: Training More Robust Models through Creation and Correction of Novel Model Errors »
Dylan Slack · Krishnaram Kenthapadi -
2021 : Offline Policy Selection under Uncertainty »
Mengjiao (Sherry) Yang · Bo Dai · Ofir Nachum · George Tucker · Dale Schuurmans -
2021 : Scalable Variational Approaches for Bayesian Causal Discovery »
Chris Cundy · Aditya Grover · Stefano Ermon -
2021 : Optimizing Functionals on the Space of Probabilities with Input Convex Neural Network »
David Alvarez-Melis · Yair Schiff · Youssef Mroueh -
2021 : Optimizing Functionals on the Space of Probabilities with Input Convex Neural Network »
David Alvarez-Melis · Yair Schiff · Youssef Mroueh -
2021 : TRAIL: Near-Optimal Imitation Learning with Suboptimal Data »
Mengjiao (Sherry) Yang · Sergey Levine · Ofir Nachum -
2022 : Neural Unbalanced Optimal Transport via Cycle-Consistent Semi-Couplings »
Frederike Lübeck · Charlotte Bunne · Gabriele Gut · Jacobo Sarabia del Castillo · Lucas Pelkmans · David Alvarez-Melis -
2022 : I Prefer not to Say – Operationalizing Fair and User-guided Data Minimization »
Tobias Leemann · Martin Pawelczyk · Christian Eberle · Gjergji Kasneci -
2022 : The Aleph & Other Metaphors for Image Generation »
Gonzalo Ramos · Rick Barraza · VICTOR DIBIA · Sharon Lo -
2022 : Multi-Environment Pretraining Enables Transfer to Action Limited Datasets »
David Venuto · Mengjiao (Sherry) Yang · Pieter Abbeel · Doina Precup · Igor Mordatch · Ofir Nachum -
2022 : Neural Unbalanced Optimal Transport via Cycle-Consistent Semi-Couplings »
Frederike Lübeck · Charlotte Bunne · Gabriele Gut · Jacobo Sarabia del Castillo · Lucas Pelkmans · David Alvarez-Melis -
2022 : On the Trade-Off between Actionable Explanations and the Right to be Forgotten »
Martin Pawelczyk · Tobias Leemann · Asia Biega · Gjergji Kasneci -
2022 : TalkToModel: Explaining Machine Learning Models with Interactive Natural Language Conversations »
Dylan Slack · Satyapriya Krishna · Himabindu Lakkaraju · Sameer Singh -
2022 : Participatory Systems for Personalized Prediction »
Hailey James · Chirag Nagpal · Katherine Heller · Berk Ustun -
2022 : GraphCG: Unsupervised Discovery of Steerable Factors in Graphs »
Shengchao Liu · Chengpeng Wang · Weili Nie · Hanchen Wang · Jiarui Lu · Bolei Zhou · Jian Tang -
2022 : Participatory Systems for Personalized Prediction »
Hailey James · Berk Ustun · Chirag Nagpal · Katherine Heller -
2023 Poster: Learning Universal Policies via Text-Guided Video Generation »
Yilun Du · Mengjiao (Sherry) Yang · Bo Dai · Hanjun Dai · Ofir Nachum · Josh Tenenbaum · Dale Schuurmans · Pieter Abbeel -
2023 Poster: DYffusion: A Dynamics-informed Diffusion Model for Spatiotemporal Forecasting »
Salva Rühling Cachay · Bo Zhao · Hailey James · Rose Yu -
2023 Poster: Towards a Unified Framework of Contrastive Learning for Disentangled Representations »
Stefan Matthes · Zhiwei Han · Hao Shen -
2023 Poster: Participatory Personalization in Classification »
Hailey James · Chirag Nagpal · Katherine Heller · Berk Ustun -
2023 Poster: Post Hoc Explanations of Language Models Can Improve Language Models »
Satyapriya Krishna · Jiaqi Ma · Dylan Slack · Asma Ghandeharioun · Sameer Singh · Himabindu Lakkaraju -
2023 Poster: Gaussian Membership Inference Privacy »
Tobias Leemann · Martin Pawelczyk · Gjergji Kasneci -
2023 Workshop: Foundation Models for Decision Making »
Mengjiao (Sherry) Yang · Ofir Nachum · Yilun Du · Stephen McAleer · Igor Mordatch · Linxi Fan · Jeannette Bohg · Dale Schuurmans -
2022 : Contributed Talk: TalkToModel: Explaining Machine Learning Models with Interactive Natural Language Conversations »
Dylan Slack · Satyapriya Krishna · Himabindu Lakkaraju · Sameer Singh -
2022 : Participatory Systems for Personalized Prediction »
Hailey James · Chirag Nagpal · Katherine Heller · Berk Ustun -
2022 : Participatory Systems for Personalized Prediction »
Hailey James · Chirag Nagpal · Katherine Heller · Berk Ustun -
2022 Spotlight: Are GANs overkill for NLP? »
David Alvarez-Melis · Vikas Garg · Adam Kalai -
2022 Workshop: Foundation Models for Decision Making »
Mengjiao (Sherry) Yang · Yilun Du · Jack Parker-Holder · Siddharth Karamcheti · Igor Mordatch · Shixiang (Shane) Gu · Ofir Nachum -
2022 : Generating Synthetic Datasets by Interpolating along Generalized Geodesics »
Jiaojiao Fan · David Alvarez-Melis -
2022 Workshop: AI for Science: Progress and Promises »
Yi Ding · Yuanqi Du · Tianfan Fu · Hanchen Wang · Anima Anandkumar · Yoshua Bengio · Anthony Gitter · Carla Gomes · Aviv Regev · Max Welling · Marinka Zitnik -
2022 Poster: Chain of Thought Imitation with Procedure Cloning »
Mengjiao (Sherry) Yang · Dale Schuurmans · Pieter Abbeel · Ofir Nachum -
2022 Poster: Multi-Game Decision Transformers »
Kuang-Huei Lee · Ofir Nachum · Mengjiao (Sherry) Yang · Lisa Lee · Daniel Freeman · Sergio Guadarrama · Ian Fischer · Winnie Xu · Eric Jang · Henryk Michalewski · Igor Mordatch -
2022 Poster: Are GANs overkill for NLP? »
David Alvarez-Melis · Vikas Garg · Adam Kalai -
2022 Poster: OpenXAI: Towards a Transparent Evaluation of Model Explanations »
Chirag Agarwal · Satyapriya Krishna · Eshika Saxena · Martin Pawelczyk · Nari Johnson · Isha Puri · Marinka Zitnik · Himabindu Lakkaraju -
2022 Poster: Fine-tuning language models to find agreement among humans with diverse preferences »
Michiel Bakker · Martin Chadwick · Hannah Sheahan · Michael Tessler · Lucy Campbell-Gillingham · Jan Balaguer · Nat McAleese · Amelia Glaese · John Aslanides · Matt Botvinick · Christopher Summerfield -
2021 : [S6] Defuse: Training More Robust Models through Creation and Correction of Novel Model Errors »
Dylan Slack · Krishnaram Kenthapadi -
2021 : Methods:: An Interactive Visualization Tool for Understanding Active Learning »
Martin Ester · Jialin Lu -
2021 : Cundy, Grover, Ermon - BCD Nets: Scalable Variational Approaches for Bayesian Causal Discovery »
Chris Cundy · Aditya Grover · Stefano Ermon -
2021 : Panel »
Mohammad Emtiyaz Khan · Atoosa Kasirzadeh · Anna Rogers · Javier González · Suresh Venkatasubramanian · Robert Williamson -
2021 Workshop: AI for Science: Mind the Gaps »
Payal Chandak · Yuanqi Du · Tianfan Fu · Wenhao Gao · Kexin Huang · Shengchao Liu · Ziming Liu · Gabriel Spadon · Max Tegmark · Hanchen Wang · Adrian Weller · Max Welling · Marinka Zitnik -
2021 Oral: Moser Flow: Divergence-based Generative Modeling on Manifolds »
Noam Rozen · Aditya Grover · Maximilian Nickel · Yaron Lipman -
2021 Poster: Combiner: Full Attention Transformer with Sparse Computation Cost »
Hongyu Ren · Hanjun Dai · Zihang Dai · Mengjiao (Sherry) Yang · Jure Leskovec · Dale Schuurmans · Bo Dai -
2021 Poster: Reliable Post hoc Explanations: Modeling Uncertainty in Explainability »
Dylan Slack · Anna Hilgard · Sameer Singh · Himabindu Lakkaraju -
2021 Poster: Decision Transformer: Reinforcement Learning via Sequence Modeling »
Lili Chen · Kevin Lu · Aravind Rajeswaran · Kimin Lee · Aditya Grover · Misha Laskin · Pieter Abbeel · Aravind Srinivas · Igor Mordatch -
2021 Poster: Provable Representation Learning for Imitation with Contrastive Fourier Features »
Ofir Nachum · Mengjiao (Sherry) Yang -
2021 Poster: Iterative Teaching by Label Synthesis »
Weiyang Liu · Zhen Liu · Hanchen Wang · Liam Paull · Bernhard Schölkopf · Adrian Weller -
2021 Poster: PiRank: Scalable Learning To Rank via Differentiable Sorting »
Robin Swezey · Aditya Grover · Bruno Charron · Stefano Ermon -
2021 Affinity Workshop: LatinX in AI (LXAI) Research @ NeurIPS 2021 »
Maria Luisa Santiago · Andres Munoz Medina · Laura Montoya · Karla Caballero Barajas · Isabel Metzger · Jose Gallego-Posada · Juan Banda · Gabriela Vega · Amanda Duarte · Patrick Feeney · Lourdes Ramírez Cerna · Walter M Mayor · Omar U. Florez · Rosina Weber · Rocio Zorrilla -
2021 Poster: Moser Flow: Divergence-based Generative Modeling on Manifolds »
Noam Rozen · Aditya Grover · Maximilian Nickel · Yaron Lipman -
2021 Poster: Counterfactual Explanations Can Be Manipulated »
Dylan Slack · Anna Hilgard · Himabindu Lakkaraju · Sameer Singh -
2021 Poster: BCD Nets: Scalable Variational Approaches for Bayesian Causal Discovery »
Chris Cundy · Aditya Grover · Stefano Ermon -
2020 : Contributed Talk: Reset-Free Lifelong Learning with Skill-Space Planning »
Kevin Lu · Aditya Grover · Pieter Abbeel · Igor Mordatch -
2020 : Panel Discussion: Building a Fair Future in Finance »
Madeleine Elish · Alice Xiang · Ana-Andreea Stoica · Cat Posey -
2020 : Invited Talk 6: Reconciling Legal and Technical Approaches to Algorithmic Bias »
Alice Xiang -
2020 Poster: From Predictions to Decisions: Using Lookahead Regularization »
Nir Rosenfeld · Anna Hilgard · Sai Srivatsa Ravindranath · David Parkes -
2020 Poster: Exploiting MMD and Sinkhorn Divergences for Fair and Transferable Representation Learning »
Luca Oneto · Michele Donini · Giulia Luise · Carlo Ciliberto · Andreas Maurer · Massimiliano Pontil -
2020 Poster: Fair regression with Wasserstein barycenters »
Evgenii Chzhen · Christophe Denis · Mohamed Hebiri · Luca Oneto · Massimiliano Pontil -
2020 Poster: Geometric Dataset Distances via Optimal Transport »
David Alvarez-Melis · Nicolo Fusi -
2020 Poster: Fair regression via plug-in estimator and recalibration with statistical guarantees »
Evgenii Chzhen · Christophe Denis · Mohamed Hebiri · Luca Oneto · Massimiliano Pontil -
2020 Oral: Fair regression via plug-in estimator and recalibration with statistical guarantees »
Evgenii Chzhen · Christophe Denis · Mohamed Hebiri · Luca Oneto · Massimiliano Pontil -
2020 Poster: Off-Policy Evaluation via the Regularized Lagrangian »
Mengjiao (Sherry) Yang · Ofir Nachum · Bo Dai · Lihong Li · Dale Schuurmans -
2019 : Poster Session »
Pravish Sainath · Mohamed Akrout · Charles Delahunt · Nathan Kutz · Guangyu Robert Yang · Joseph Marino · L F Abbott · Nicolas Vecoven · Damien Ernst · andrew warrington · Michael Kagan · Kyunghyun Cho · Kameron Harris · Leopold Grinberg · John J. Hopfield · Dmitry Krotov · Taliah Muhammad · Erick Cobos · Edgar Walker · Jacob Reimer · Andreas Tolias · Alexander Ecker · Janaki Sheth · Yu Zhang · Maciej Wołczyk · Jacek Tabor · Szymon Maszke · Roman Pogodin · Dane Corneil · Wulfram Gerstner · Baihan Lin · Guillermo Cecchi · Jenna M Reinen · Irina Rish · Guillaume Bellec · Darjan Salaj · Anand Subramoney · Wolfgang Maass · Yueqi Wang · Ari Pakman · Jin Hyung Lee · Liam Paninski · Bryan Tripp · Colin Graber · Alex Schwing · Luke Prince · Gabriel Ocker · Michael Buice · Benjamin Lansdell · Konrad Kording · Jack Lindsey · Terrence Sejnowski · Matthew Farrell · Eric Shea-Brown · Nicolas Farrugia · Victor Nepveu · Jiwoong Im · Kristin Branson · Brian Hu · Ramakrishnan Iyer · Stefan Mihalas · Sneha Aenugu · Hananel Hazan · Sihui Dai · Tan Nguyen · Doris Tsao · Richard Baraniuk · Anima Anandkumar · Hidenori Tanaka · Aran Nayebi · Stephen Baccus · Surya Ganguli · Dean Pospisil · Eilif Muller · Jeffrey S Cheng · Gaël Varoquaux · Kamalaker Dadi · Dimitrios C Gklezakos · Rajesh PN Rao · Anand Louis · Christos Papadimitriou · Santosh Vempala · Naganand Yadati · Daniel Zdeblick · Daniela M Witten · Nicholas Roberts · Vinay Prabhu · Pierre Bellec · Poornima Ramesh · Jakob H Macke · Santiago Cadena · Guillaume Bellec · Franz Scherr · Owen Marschall · Robert Kim · Hannes Rapp · Marcio Fonseca · Oliver Armitage · Jiwoong Im · Thomas Hardcastle · Abhishek Sharma · Wyeth Bair · Adrian Valente · Shane Shang · Merav Stern · Rutuja Patil · Peter Wang · Sruthi Gorantla · Peter Stratton · Tristan Edwards · Jialin Lu · Martin Ester · Yurii Vlasov · Siavash Golkar -
2019 : Implementing Responsible AI »
Brian Green · Wendell Wallach · Patrick Lin · Nenad Tomasev · Jingying Yang · Libby Kinsey -
2019 : ML system documentation for transparency and responsible AI development - a process and an artifact »
Jingying Yang -
2019 : Poster Session + Lunch »
Maxwell Nye · Robert Kim · Toby St Clere Smithe · Takeshi D. Itoh · Omar U. Florez · Vesna G. Djokic · Sneha Aenugu · Mariya Toneva · Imanol Schlag · Dan Schwartz · Max Raphael Sobroza Marques · Pravish Sainath · Peng-Hsuan Li · Rishi Bommasani · Najoung Kim · Paul Soulos · Steven Frankland · Nadezhda Chirkova · Dongqi Han · Adam Kortylewski · Rich Pang · Milena Rabovsky · Jonathan Mamou · Vaibhav Kumar · Tales Marra -
2019 : Poster Session »
Clement Canonne · Kwang-Sung Jun · Seth Neel · Di Wang · Giuseppe Vietri · Liwei Song · Jonathan Lebensold · Huanyu Zhang · Lovedeep Gondara · Ang Li · FatemehSadat Mireshghallah · Jinshuo Dong · Anand D Sarwate · Antti Koskela · Joonas Jälkö · Matt Kusner · Dingfan Chen · Mi Jung Park · Ashwin Machanavajjhala · Jayashree Kalpathy-Cramer · · Vitaly Feldman · Andrew Tomkins · Hai Phan · Hossein Esfandiari · Mimansa Jaiswal · Mrinank Sharma · Jeff Druce · Casey Meehan · Zhengli Zhao · Hsiang Hsu · Davis Railsback · Abraham Flaxman · · Julius Adebayo · Aleksandra Korolova · Jiaming Xu · Naoise Holohan · Samyadeep Basu · Matthew Joseph · My Thai · Xiaoqian Yang · Ellen Vitercik · Michael Hutchinson · Chenghong Wang · Gregory Yauney · Yuchao Tao · Chao Jin · Si Kai Lee · Audra McMillan · Rauf Izmailov · Jiayi Guo · Siddharth Swaroop · Tribhuvanesh Orekondy · Hadi Esmaeilzadeh · Kevin Procopio · Alkis Polyzotis · Jafar Mohammadi · Nitin Agrawal -
2019 : Poster lighting round »
Yinhe Zheng · Anders Søgaard · Abdelrhman Saleh · Youngsoo Jang · Hongyu Gong · Omar U. Florez · Margaret Li · Andrea Madotto · The Tung Nguyen · Ilia Kulikov · Arash einolghozati · Yiru Wang · Mihail Eric · Victor Petrén Bach Hansen · Nurul Lubis · Yen-Chen Wu -
2019 : Partnership on AI and ML4D »
Alice Xiang -
2019 Poster: Disentangling Influence: Using disentangled representations to audit model predictions »
Charles Marx · Richard Lanas Phillips · Sorelle Friedler · Carlos Scheidegger · Suresh Venkatasubramanian -
2019 Poster: Leveraging Labeled and Unlabeled Data for Consistent Fair Binary Classification »
Evgenii Chzhen · Christophe Denis · Mohamed Hebiri · Luca Oneto · Massimiliano Pontil -
2019 Poster: Bias Correction of Learned Generative Models using Likelihood-Free Importance Weighting »
Aditya Grover · Jiaming Song · Ashish Kapoor · Kenneth Tran · Alekh Agarwal · Eric Horvitz · Stefano Ermon -
2018 : Poster Session »
Phillipp Schoppmann · Patrick Yu · Valerie Chen · Travis Dick · Marc Joye · Ningshan Zhang · Frederik Harder · Olli Saarikivi · Théo Ryffel · Yunhui Long · Théo JOURDAN · Di Wang · Antonio Marcedone · Negev Shekel Nosatzki · Yatharth A Dubey · Antti Koskela · Peter Bloem · Aleksandra Korolova · Martin Bertran · Hao Chen · Galen Andrew · Natalia Martinez · Janardhan Kulkarni · Jonathan Passerat-Palmbach · Guillermo Sapiro · Amrita Roy Chowdhury -
2018 : Panel »
Paroma Varma · Aditya Grover · Will Hamilton · Jessica Hamrick · Thomas Kipf · Marinka Zitnik -
2018 : Contributed talk 5: DP-MAC: The Differentially Private Method of Auxiliary Coordinates for Deep Learning »
Frederik Harder -
2018 Workshop: Relational Representation Learning »
Aditya Grover · Paroma Varma · Frederic Sala · Christopher Ré · Jennifer Neville · Stefano Ermon · Steven Holtzen -
2018 Poster: Streamlining Variational Inference for Constraint Satisfaction Problems »
Aditya Grover · Tudor Achim · Stefano Ermon -
2018 Poster: Empirical Risk Minimization Under Fairness Constraints »
Michele Donini · Luca Oneto · Shai Ben-David · John Shawe-Taylor · Massimiliano Pontil -
2018 Poster: Towards Robust Interpretability with Self-Explaining Neural Networks »
David Alvarez-Melis · Tommi Jaakkola -
2017 : Structured Optimal Transport (with T. Jaakkola, S. Jegelka) »
David Alvarez-Melis -
2017 : Posters »
Reihaneh Rabbany · Tianxi Li · Jacob Carroll · Yin Cheng Ng · Xueyu Mao · Alexandre Hollocou · Jeric Briones · James Atwood · John Santerre · Natalie Klein · Pranamesh Chakraborty · Zahra Razaee · Chandan Singh · Arun Suggala · Beilun Wang · Andrew R. Lawrence · Aditya Grover · FARSHAD HARIRCHI · radhika arava · Qing Zhou · Takatomi Kubo · Josue Orellana · Govinda Kamath · Vivek Kumar Bagaria -
2017 : Contributed talk 4: Graphite: Iterative Generative Modeling of Graphs »
Aditya Grover -
2016 Poster: Variational Bayes on Monte Carlo Steroids »
Aditya Grover · Stefano Ermon -
2011 Poster: The Impact of Unlabeled Patterns in Rademacher Complexity Theory for Kernel Classifiers »
Luca Oneto · Davide Anguita · Alessandro Ghio · Sandro Ridella