Timezone: »
Late-Breaking Papers (Talks)
David Silver · Simon Du · Matthias Plappert
- Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model - Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, Timothy Lillicrap, David Silver
- Is a Good Representation Sufficient for Sample Efficient Reinforcement Learning? - Simon S. Du, Sham M. Kakade, Ruosong Wang, Lin F. Yang
- Solving Rubik's Cube with a Robot Hand - OpenAI, Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew, Arthur Petron, Alex Paino, Matthias Plappert, Glenn Powell, Raphael Ribas, Jonas Schneider, Nikolas Tezak, Jerry Tworek, Peter Welinder, Lilian Weng, Qiming Yuan, Wojciech Zaremba, Lei Zhang
Author Information
David Silver (DeepMind)
Simon Du (Institute for Advanced Study)
Matthias Plappert (OpenAI)
More from the Same Authors
-
2021 Spotlight: Proper Value Equivalence »
Christopher Grimm · Andre Barreto · Greg Farquhar · David Silver · Satinder Singh -
2021 Spotlight: Online and Offline Reinforcement Learning by Planning with a Learned Model »
Julian Schrittwieser · Thomas Hubert · Amol Mandhane · Mohammadamin Barekatain · Ioannis Antonoglou · David Silver -
2021 Workshop: Deep Reinforcement Learning »
Pieter Abbeel · Chelsea Finn · David Silver · Matthew Taylor · Martha White · Srijita Das · Yuqing Du · Andrew Patterson · Manan Tomar · Olivia Watkins -
2021 : Bootstrapped Meta-Learning »
Sebastian Flennerhag · Yannick Schroecker · Tom Zahavy · Hado van Hasselt · David Silver · Satinder Singh -
2021 Poster: Proper Value Equivalence »
Christopher Grimm · Andre Barreto · Greg Farquhar · David Silver · Satinder Singh -
2021 Poster: Discovery of Options via Meta-Learned Subgoals »
Vivek Veeriah · Tom Zahavy · Matteo Hessel · Zhongwen Xu · Junhyuk Oh · Iurii Kemaev · Hado van Hasselt · David Silver · Satinder Singh -
2021 Poster: Self-Consistent Models and Values »
Greg Farquhar · Kate Baumli · Zita Marinho · Angelos Filos · Matteo Hessel · Hado van Hasselt · David Silver -
2021 Poster: Online and Offline Reinforcement Learning by Planning with a Learned Model »
Julian Schrittwieser · Thomas Hubert · Amol Mandhane · Mohammadamin Barekatain · Ioannis Antonoglou · David Silver -
2020 Workshop: Deep Reinforcement Learning »
Pieter Abbeel · Chelsea Finn · Joelle Pineau · David Silver · Satinder Singh · Coline Devin · Misha Laskin · Kimin Lee · Janarthanan Rajendran · Vivek Veeriah -
2020 Poster: Over-parameterized Adversarial Training: An Analysis Overcoming the Curse of Dimensionality »
Yi Zhang · Orestis Plevrakis · Simon Du · Xingguo Li · Zhao Song · Sanjeev Arora -
2020 Poster: Planning with General Objective Functions: Going Beyond Total Rewards »
Ruosong Wang · Peilin Zhong · Simon Du · Russ Salakhutdinov · Lin Yang -
2020 Poster: Is Long Horizon RL More Difficult Than Short Horizon RL? »
Ruosong Wang · Simon Du · Lin Yang · Sham Kakade -
2020 Poster: Agnostic $Q$-learning with Function Approximation in Deterministic Systems: Near-Optimal Bounds on Approximation Error and Sample Complexity »
Simon Du · Jason Lee · Gaurav Mahajan · Ruosong Wang -
2020 Poster: On Reward-Free Reinforcement Learning with Linear Function Approximation »
Ruosong Wang · Simon Du · Lin Yang · Russ Salakhutdinov -
2020 Poster: Provably Efficient Exploration for Reinforcement Learning Using Unsupervised Learning »
Fei Feng · Ruosong Wang · Wotao Yin · Simon Du · Lin Yang -
2020 Spotlight: Provably Efficient Exploration for Reinforcement Learning Using Unsupervised Learning »
Fei Feng · Ruosong Wang · Wotao Yin · Simon Du · Lin Yang -
2019 : Poster Spotlight 2 »
Aaron Sidford · Mengdi Wang · Lin Yang · Yinyu Ye · Zuyue Fu · Zhuoran Yang · Yongxin Chen · Zhaoran Wang · Ofir Nachum · Bo Dai · Ilya Kostrikov · Dale Schuurmans · Ziyang Tang · Yihao Feng · Lihong Li · Denny Zhou · Qiang Liu · Rodrigo Toro Icarte · Ethan Waldie · Toryn Klassen · Rick Valenzano · Margarita Castro · Simon Du · Sham Kakade · Ruosong Wang · Minshuo Chen · Tianyi Liu · Xingguo Li · Zhaoran Wang · Tuo Zhao · Philip Amortila · Doina Precup · Prakash Panangaden · Marc Bellemare -
2019 Workshop: Deep Reinforcement Learning »
Pieter Abbeel · Chelsea Finn · Joelle Pineau · David Silver · Satinder Singh · Joshua Achiam · Carlos Florensa · Christopher Grimm · Haoran Tang · Vivek Veeriah -
2019 Poster: Towards Understanding the Importance of Shortcut Connections in Residual Networks »
Tianyi Liu · Minshuo Chen · Mo Zhou · Simon Du · Enlu Zhou · Tuo Zhao -
2019 Poster: Graph Neural Tangent Kernel: Fusing Graph Neural Networks with Graph Kernels »
Simon Du · Kangcheng Hou · Russ Salakhutdinov · Barnabas Poczos · Ruosong Wang · Keyulu Xu -
2019 Poster: Acceleration via Symplectic Discretization of High-Resolution Differential Equations »
Bin Shi · Simon Du · Weijie Su · Michael Jordan -
2019 Poster: Provably Efficient Q-learning with Function Approximation via Distribution Shift Error Checking Oracle »
Simon Du · Yuping Luo · Ruosong Wang · Hanrui Zhang -
2019 Poster: On Exact Computation with an Infinitely Wide Neural Net »
Sanjeev Arora · Simon Du · Wei Hu · Zhiyuan Li · Russ Salakhutdinov · Ruosong Wang -
2019 Spotlight: On Exact Computation with an Infinitely Wide Neural Net »
Sanjeev Arora · Simon Du · Wei Hu · Zhiyuan Li · Russ Salakhutdinov · Ruosong Wang -
2018 : David Silver »
David Silver -
2018 Workshop: Deep Reinforcement Learning »
Pieter Abbeel · David Silver · Satinder Singh · Joelle Pineau · Joshua Achiam · Rein Houthooft · Aravind Srinivas -
2017 : Panel Discussion »
Matt Botvinick · Emma Brunskill · Marcos Campos · Jan Peters · Doina Precup · David Silver · Josh Tenenbaum · Roy Fox -
2017 : Deep Reinforcement Learning with Subgoals (David Silver) »
David Silver -
2017 Symposium: Deep Reinforcement Learning »
Pieter Abbeel · Yan Duan · David Silver · Satinder Singh · Junhyuk Oh · Rein Houthooft -
2017 Poster: Natural Value Approximators: Learning when to Trust Past Estimates »
Zhongwen Xu · Joseph Modayil · Hado van Hasselt · Andre Barreto · David Silver · Tom Schaul -
2017 Poster: Successor Features for Transfer in Reinforcement Learning »
Andre Barreto · Will Dabney · Remi Munos · Jonathan Hunt · Tom Schaul · David Silver · Hado van Hasselt -
2017 Poster: A Unified Game-Theoretic Approach to Multiagent Reinforcement Learning »
Marc Lanctot · Vinicius Zambaldi · Audrunas Gruslys · Angeliki Lazaridou · Karl Tuyls · Julien Perolat · David Silver · Thore Graepel -
2017 Poster: Imagination-Augmented Agents for Deep Reinforcement Learning »
Sébastien Racanière · Theophane Weber · David Reichert · Lars Buesing · Arthur Guez · Danilo Jimenez Rezende · Adrià Puigdomènech Badia · Oriol Vinyals · Nicolas Heess · Yujia Li · Razvan Pascanu · Peter Battaglia · Demis Hassabis · David Silver · Daan Wierstra -
2017 Spotlight: Successor Features for Transfer in Reinforcement Learning »
Andre Barreto · Will Dabney · Remi Munos · Jonathan Hunt · Tom Schaul · David Silver · Hado van Hasselt -
2017 Spotlight: Natural Value Approximators: Learning when to Trust Past Estimates »
Zhongwen Xu · Joseph Modayil · Hado van Hasselt · Andre Barreto · David Silver · Tom Schaul -
2017 Oral: Imagination-Augmented Agents for Deep Reinforcement Learning »
Sébastien Racanière · Theophane Weber · David Reichert · Lars Buesing · Arthur Guez · Danilo Jimenez Rezende · Adrià Puigdomènech Badia · Oriol Vinyals · Nicolas Heess · Yujia Li · Razvan Pascanu · Peter Battaglia · Demis Hassabis · David Silver · Daan Wierstra -
2016 Poster: Learning values across many orders of magnitude »
Hado van Hasselt · Arthur Guez · Arthur Guez · Matteo Hessel · Volodymyr Mnih · David Silver -
2015 Workshop: Deep Reinforcement Learning »
Pieter Abbeel · John Schulman · Satinder Singh · David Silver -
2015 Poster: Learning Continuous Control Policies by Stochastic Value Gradients »
Nicolas Heess · Gregory Wayne · David Silver · Timothy Lillicrap · Tom Erez · Yuval Tassa