Timezone: »
Accepted Posters
Kandinsky Patterns: An open toolbox for creating explainable machine learning challenges Heimo Muller · Andreas Holzinger
MOCA: An Unsupervised Algorithm for Optimal Aggregation of Challenge Submissions Robert Vogel · Mehmet Eren Ahsen · Gustavo A. Stolovitzky
FDL: Mission Support Challenge Luís F. Simões · Ben Day · Vinutha M. Shreenath · Callum Wilson
From data challenges to collaborative gig science. Coopetitive research process and platform Andrey Ustyuzhanin · Mikhail Belous · Leyla Khatbullina · Giles Strong
Smart(er) Machine Learning for Practitioners Prabhu Pradhan
Improving Reproducibility of Benchmarks Xavier Bouthillier
Guaranteeing Reproducibility in Deep Learning Competitions Brandon Houghton
Organizing crowd-sourced AI challenges in enterprise environments: opportunities and challenges Mahtab Mirmomeni · Isabell Kiral · Subhrajit Roy · Todd Mummert · Alan Braz · Jason Tsay · Jianbin Tang · Umar Asif · Thomas Schaffter · Eren Mehmet · Bruno De Assis Marques · Stefan Maetschke · Rania Khalaf · Michal Rosen-Zvi · John Cohn · Gustavo Stolovitzky · Stefan Harrer
WikiCities: a Feature Engineering Educational Resource Pablo Duboue
Reinforcement Learning Meets Information Seeking: Dynamic Search Challenge Zhiwen Tang · Grace Hui Yang
AI Journey 2019: School Tests Solving Competition Alexey Natekin · Peter Romov · Valentin Malykh
A BIRDSAI View for Conservation Elizabeth Bondi · Milind Tambe · Raghav Jain · Palash Aggrawal · Saket Anand · Robert Hannaford · Ashish Kapoor · Jim Piavis · Shital Shah · Lucas Joppa · Bistra Dilkina
Author Information
Gustavo Stolovitzky (IBM Research)
Prabhu Pradhan (FGIET (AKTU) | IIT Genoa | IISc Bangalore)
[Prabhu](https://prabhupradhan.github.io) is a Research Assistant at MPI-IS Tübingen, working on Robustness and Confounding in Machine Learning.
Pablo Duboue (Textualization Software Ltd.)
Pablo Duboue has a PhD in Computer Science from Columbia University and was part of the IBM Watson team that beat the Jeopardy! Champions in 2011. He splits his time between teaching Machine Learning, doing open research, contributing to free software projects, and consulting for start-ups. He has taught in three different countries and done joint research with more than 50 co-authors. Recent career highlights include a best paper award in the Canadian AI conference industrial track and consulting for a start-up acquired by Intel Corp.
Zhiwen Tang (Georgetown University)
Aleksei Natekin (OpenDataScience.ru)
Elizabeth Bondi-Kelly (Harvard University)
Xavier Bouthillier (Université de Montréal)
Stephanie Milani (Carnegie Mellon University)
Heimo Müller (Medical University Graz)
Andreas T. Holzinger (Medical University Graz and Technical University Graz)
Andreas Holzinger promotes a synergistic approach to Human-Centred AI (HCAI) and has pioneered in interactive machine learning (iML) with the human-in-the-loop. He promotes an integrated machine learning approach with the goal to augment human intelligence with artificial intelligence to help to solve problems in health informatics. He works towards explainable AI and Causability, ultimately fostering ethical responsible machine learning, trust and acceptance for AI.
Stefan Harrer (IBM Research)
Ben Day (University of Cambridge)
Andrey Ustyuzhanin (NRU HSE, YSDA)
William Guss (Carnegie Mellon University)
Mahtab Mirmomeni (IBM Research)
Mahtab is a computer scientist and machine learning researcher in IBM Research Australia where she works on detecting epileptic seizures from time series, multi-modal data. She is also the lead solutions architect for IBM's crowdsourced AI platform for enterprises.
More from the Same Authors
-
2021 : Structure-aware generation of drug-like molecules »
Pavol Drotar · Arian Jamasb · Ben Day · Catalina Cangea · Pietro Lió -
2022 Poster: Uni[MASK]: Unified Inference in Sequential Decision Problems »
Micah Carroll · Orr Paradise · Jessy Lin · Raluca Georgescu · Mingfei Sun · David Bignell · Stephanie Milani · Katja Hofmann · Matthew Hausknecht · Anca Dragan · Sam Devlin -
2022 Competition: NeurIPS 2022 Competition Track: Overview & Results »
Marco Ciccone · Gustavo Stolovitzky · Jake Albrecht -
2021 : Neural ODE Processes: A Short Summary »
Alexander Norcliffe · Cristian Bodnar · Ben Day · Jacob Moss · Pietro Lió -
2021 : On Second Order Behaviour in Augmented Neural ODEs: A Short Summary »
Alexander Norcliffe · Cristian Bodnar · Ben Day · Nikola Simidjievski · Pietro Lió -
2021 : Methods:: Understanding Human-like Behavior in Video Game Navigation »
Evelyn Zuniga · Stephanie Milani · Katja Hofmann -
2021 : Structure-aware generation of drug-like molecules »
Pavol Drotar · Arian Jamasb · Ben Day · Catalina Cangea · Pietro Lió -
2021 : BASALT: A MineRL Competition on Solving Human-Judged Task + Q&A »
Rohin Shah · Cody Wild · Steven Wang · Neel Alex · Brandon Houghton · William Guss · Sharada Mohanty · Stephanie Milani · Nicholay Topin · Pieter Abbeel · Stuart Russell · Anca Dragan -
2021 : Diamond: A MineRL Competition on Training Sample-Efficient Agents + Q&A »
William Guss · Alara Dirik · Byron Galbraith · Brandon Houghton · Anssi Kanervisto · Noboru Kuno · Stephanie Milani · Sharada Mohanty · Karolis Ramanauskas · Ruslan Salakhutdinov · Rohin Shah · Nicholay Topin · Steven Wang · Cody Wild -
2020 : Introduction and results of the 2020 MineRL Competition »
William Guss · Stephanie Milani · Nicholay Topin -
2020 : NeurIPS RL Competitions: MineRL »
William Guss · Stephanie Milani -
2020 Workshop: ML Retrospectives, Surveys & Meta-Analyses (ML-RSA) »
Chhavi Yadav · Prabhu Pradhan · Jesse Dodge · Mayoore Jaiswal · Peter Henderson · Abhishek Gupta · Ryan Lowe · Jessica Forde · Joelle Pineau -
2020 Workshop: ML Competitions at the Grassroots (CiML 2020) »
Tara Chklovski · Adrienne Mendrik · Amir Banifatemi · Gustavo Stolovitzky -
2020 Poster: On Second Order Behaviour in Augmented Neural ODEs »
Alexander Norcliffe · Cristian Bodnar · Ben Day · Nikola Simidjievski · Pietro Lió -
2019 : Contributed talk: Exploiting Uncertain Real-Time Information from Deep Learning in Signaling Games for Security and Sustainability »
Elizabeth Bondi-Kelly -
2019 : Poster Session »
Matthia Sabatelli · Adam Stooke · Amir Abdi · Paulo Rauber · Leonard Adolphs · Ian Osband · Hardik Meisheri · Karol Kurach · Johannes Ackermann · Matt Benatan · GUO ZHANG · Chen Tessler · Dinghan Shen · Mikayel Samvelyan · Riashat Islam · Murtaza Dalal · Luke Harries · Andrey Kurenkov · Konrad Żołna · Sudeep Dasari · Kristian Hartikainen · Ofir Nachum · Kimin Lee · Markus Holzleitner · Vu Nguyen · Francis Song · Christopher Grimm · Felipe Leno da Silva · Yuping Luo · Yifan Wu · Alex Lee · Thomas Paine · Wei-Yang Qu · Daniel Graves · Yannis Flet-Berliac · Yunhao Tang · Suraj Nair · Matthew Hausknecht · Akhil Bagaria · Simon Schmitt · Bowen Baker · Paavo Parmas · Benjamin Eysenbach · Lisa Lee · Siyu Lin · Daniel Seita · Abhishek Gupta · Riley Simmons-Edler · Yijie Guo · Kevin Corder · Vikash Kumar · Scott Fujimoto · Adam Lerer · Ignasi Clavera Gilaberte · Nicholas Rhinehart · Ashvin Nair · Ge Yang · Lingxiao Wang · Sungryull Sohn · J. Fernando Hernandez-Garcia · Xian Yeow Lee · Rupesh Srivastava · Khimya Khetarpal · Chenjun Xiao · Luckeciano Carvalho Melo · Rishabh Agarwal · Tianhe Yu · Glen Berseth · Devendra Singh Chaplot · Jie Tang · Anirudh Srinivasan · Tharun Kumar Reddy Medini · Aaron Havens · Misha Laskin · Asier Mujika · Rohan Saphal · Joseph Marino · Alex Ray · Joshua Achiam · Ajay Mandlekar · Zhuang Liu · Danijar Hafner · Zhiwen Tang · Ted Xiao · Michael Walton · Jeff Druce · Ferran Alet · Zhang-Wei Hong · Stephanie Chan · Anusha Nagabandi · Hao Liu · Hao Sun · Ge Liu · Dinesh Jayaraman · John Co-Reyes · Sophia Sanborn -
2019 : Morning Coffee Break & Poster Session »
Eric Metodiev · Keming Zhang · Markus Stoye · Randy Churchill · Soumalya Sarkar · Miles Cranmer · Johann Brehmer · Danilo Jimenez Rezende · Peter Harrington · AkshatKumar Nigam · Nils Thuerey · Lukasz Maziarka · Alvaro Sanchez Gonzalez · Atakan Okan · James Ritchie · N. Benjamin Erichson · Harvey Cheng · Peihong Jiang · Seong Ho Pahng · Samson Koelle · Sami Khairy · Adrian Pol · Rushil Anirudh · Jannis Born · Benjamin Sanchez-Lengeling · Brian Timar · Rhys Goodall · Tamás Kriváchy · Lu Lu · Thomas Adler · Nathaniel Trask · Noëlie Cherrier · Tomohiko Konno · Muhammad Kasim · Tobias Golling · Zaccary Alperstein · Andrei Ustyuzhanin · James Stokes · Anna Golubeva · Ian Char · Ksenia Korovina · Youngwoo Cho · Chanchal Chatterjee · Tom Westerhout · Gorka Muñoz-Gil · Juan Zamudio-Fernandez · Jennifer Wei · Brian Lee · Johannes Kofler · Bruce Power · Nikita Kazeev · Andrey Ustyuzhanin · Artem Maevskiy · Pascal Friederich · Arash Tavakoli · Willie Neiswanger · Bohdan Kulchytskyy · sindhu hari · Paul Leu · Paul Atzberger -
2019 : The MineRL competition »
Misa Ogura · Joe Booth · Sophia Sun · Nicholay Topin · Brandon Houghton · William Guss · Stephanie Milani · Oriol Vinyals · Katja Hofmann · JIA KIM · Karolis Ramanauskas · Florian Laurent · Daichi Nishio · Anssi Kanervisto · Alexey Skrynnik · Artemij Amiranashvili · Christian Scheller · KAIXIN WANG · Yanick Schraner -
2019 Workshop: Retrospectives: A Venue for Self-Reflection in ML Research »
Ryan Lowe · Yoshua Bengio · Joelle Pineau · Michela Paganini · Jessica Forde · Shagun Sodhani · Abhishek Gupta · Joel Lehman · Peter Henderson · Kanika Madan · Koustuv Sinha · Xavier Bouthillier -
2018 : TrackML, a Particle Physics Tracking Machine Learning Challenge, Jean-Roch Vlimant (Caltech), Vincenzo Innocente, Andreas Salzburger (CERN), Isabelle Guyon (ChaLearn), Sabrina Amrouche, Tobias Golling, Moritz Kiehn (Geneva University),David Rousseau∗, Yet »
Andrey Ustyuzhanin · jean-roch vlimant -
2018 Poster: Fast Approximate Natural Gradient Descent in a Kronecker Factored Eigenbasis »
Thomas George · César Laurent · Xavier Bouthillier · Nicolas Ballas · Pascal Vincent -
2015 Workshop: Applying (machine) Learning to Experimental Physics (ALEPH) and «Flavours of Physics» challenge »
Pavel Serdyukov · Andrey Ustyuzhanin · Marcin Chrząszcz · Francesco Dettori · Marc-Olivier Bettler -
2015 : Flavors of Physics Challenge »
Andrey Ustyuzhanin -
2015 Poster: Efficient Exact Gradient Update for training Deep Networks with Very Large Sparse Targets »
Pascal Vincent · Alexandre de Brébisson · Xavier Bouthillier -
2015 Oral: Efficient Exact Gradient Update for training Deep Networks with Very Large Sparse Targets »
Pascal Vincent · Alexandre de Brébisson · Xavier Bouthillier -
2014 Workshop: Challenges in Machine Learning workshop (CiML 2014) »
Isabelle Guyon · Evelyne Viegas · Percy Liang · Olga Russakovsky · Rinat Sergeev · Gábor Melis · Michele Sebag · Gustavo Stolovitzky · Jaume Bacardit · Michael S Kim · Ben Hamner