Timezone: »
Despite recent breakthroughs, the ability of deep learning and reinforcement learning to outperform traditional approaches to control physically embodied robotic agents remains largely unproven. To help bridge this gap, we have developed the “AI Driving Olympics” (AI-DO), a competition with the objective of evaluating the state-of-the-art in machine learning and artificial intelligence for mobile robotics. Based on the simple and well specified autonomous driving and navigation environment called “Duckietown,” AI-DO includes a series of tasks of increasing complexity—from simple lane-following to fleet management. For each task, we provide tools for competitors to use in the form of simulators, data logs, code templates, baseline implementations, and low-cost access to robotic hardware. We evaluate submissions in simulation online, on standardized hardware environments, and finally at the competition events. We have held successful AI-DO competitions at NeurIPS 2018 and ICRA 2019, and will be holding AI-DO 3 at NeurIPS 2020. Together, these competitions highlight the need for better benchmarks, which are lacking in robotics, as well as improved mechanisms to bridge the gap between simulation and reality.
Author Information
Matthew Walter (TTI-Chicago)
More from the Same Authors
-
2022 : On Convexity and Linear Mode Connectivity in Neural Networks »
David Yunis · Kumar Kshitij Patel · Pedro Savarese · Gal Vardi · Jonathan Frankle · Matthew Walter · Karen Livescu · Michael Maire -
2021 : AI Driving Olympics + Q&A »
Andrea Censi · Liam Paull · Jacopo Tani · Emilio Frazzoli · Holger Caesar · Matthew Walter · Andrea Daniele · Sahika Genc · Sharada Mohanty -
2019 Poster: Maximum Expected Hitting Cost of a Markov Decision Process and Informativeness of Rewards »
Falcon Dai · Matthew Walter -
2015 : Listen, Attend and Walk: Neural Mapping of Navigational Instructions to Action Sequences »
Matthew Walter