`

Timezone: »

 
Afternoon Coffee Break & Poster Session
Heidi Komkov · Stanislav Fort · Zhaoyou Wang · Rose Yu · Ji Hwan Park · Samuel Schoenholz · Taoli Cheng · Ryan-Rhys Griffiths · Chase Shimmin · Surya Karthik Mukkavili · Philippe Schwaller · Christian Knoll · Yangzesheng Sun · Keiichi Kisamori · Gavin Graham · Gavin Portwood · Hsin-Yuan Huang · Paul Novello · Moritz Munchmeyer · Anna Jungbluth · Daniel Levine · Ibrahim Ayed · Steven Atkinson · Jan Hermann · Peter Grönquist · · Priyabrata Saha · Yannik Glaser · Lingge Li · Yutaro Iiyama · Rushil Anirudh · Maciej Koch-Janusz · Vikram Sundar · Francois Lanusse · Auralee Edelen · Jonas Köhler · Jacky H. T. Yip · jiadong guo · Xiangyang Ju · Adi Hanuka · Adrian Albert · Valentina Salvatelli · Mauro Verzetti · Javier Duarte · Eric Moreno · Emmanuel de Bézenac · Athanasios Vlontzos · Alok Singh · Thomas Klijnsma · Brad Neuberg · Paul Wright · Mustafa Mustafa · David Schmidt · Steven Farrell · Hao Sun

Sat Dec 14 03:20 PM -- 04:20 PM (PST) @ None

Author Information

Heidi Komkov (University of Maryland)
Stanislav Fort (Stanford University / Google Research)
Zhaoyou Wang (Stanford University)
Rose Yu (Northeastern University)
Ji Hwan Park (Brookhaven National Lab.)
Samuel Schoenholz (Google Brain)
Taoli Cheng (MILA, Université de Montréal)
Ryan-Rhys Griffiths (University of Cambridge)
Chase Shimmin (Yale University)
Surya Karthik Mukkavili (Mila)
Philippe Schwaller (IBM Research Zurich / UniBe)
Christian Knoll (Graz University of Technology)
Yangzesheng Sun (University of Minnesota)
Keiichi Kisamori (National Institute of Advanced Industrial Science and Technology (AIST))
Gavin Graham (Total SA)
Gavin Portwood (Los Alamos National Laboratory)

I am a post-doc researcher at Los Alamos National Lab. My expertise is in fluid turbulence simulation and modeling. Current research is focused on developing turbulence models with various machine learning approaches.

Hsin-Yuan Huang (California Institute of Technology)
Paul Novello (French Alternative Energies and Atomic Energy Commission / INRIA Paris Saclay)
Moritz Munchmeyer (Perimeter Institute for Theoretical Physics)
Anna Jungbluth (University of Oxford)
Daniel Levine (Schrodinger, Inc.)
Ibrahim Ayed (Sorbonne Université)
Steven Atkinson (GE Research)
Jan Hermann (FU Berlin)
Peter Grönquist (ETHZ)
Priyabrata Saha (Georgia Institute of Technology)
Yannik Glaser (University of Hawaii at Manoa)

Graduate student working on applying Machine Learning models to problems from the natural sciences.

Lingge Li (UC Irvine)
Yutaro Iiyama (CERN)
Rushil Anirudh (Lawrence Livermore National Laboratory)
Maciej Koch-Janusz (ETH Zurich)
Vikram Sundar (University of Cambridge)
Francois Lanusse (UC Berkeley)
Auralee Edelen (SLAC / Stanford)
Jonas Köhler (Free University of Berlin)
Jacky H. T. Yip (The Chinese University of Hong Kong)
jiadong guo (peng cheng laboratory)

My research focus on ML in finance.

Xiangyang Ju (Lawrence Berkeley National Laboratory)
Adi Hanuka (SLAC, Stanford)
Adrian Albert (Terrafuse, Inc.)

Dr. Adrian Albert is an expert in machine learning science, physics, and energy systems. He leads Terrafuse’s machine learning research and development. Previously, he was a machine learning research scientist at Lawrence Berkeley National Lab, where he conducted research on physics-enabled machine learning for physical science applications. He completed postdoctoral research at MIT working on deep learning for remote-sensing imagery and urban science applications and obtained his PhD in Electrical Engineering at Stanford with a thesis on machine learning for energy grids. He was one of the first machine learning scientists at the startup C3.ai, where he helped build C3’s and the industry’s first AI product for large-scale predictive maintenance for energy and industrial systems. He was part of the founding team for, and is currently an advisor at, EdTech startup Myriad Sensors, makers of multifunctional sensors for STEM.

Valentina Salvatelli (IQVIA & NASA Frontier Development Lab)

Valentina is a Senior Applied Scientist at Microsoft Research. In her current role in the AI for Health team at MSR she builds advanced deep learning models to predict genetic mutations from medical images. Previously at IQVIA she worked to support the cure of rare diseases by develping ML models based on electronic health records. She has a background as astrophysicist, in her PhD she researched how to use astronomical data and bayesian inference to understand the evolution of the universe.  Valentina is also affiliated to the SETI Institute and the Frontier Development Lab, with which she works on ML for satellite instruments (solar telescopes and cubesats).

Mauro Verzetti (CERN)

High energy physicist with over nine years of experience in data science and data mining at the Large Hadron Collider. Specialised in statistical modelling of the data, both through ansatz fitting and machine learning. Skilled software developer, fluent in both python and C++. Currently leading a team of ~50 people focused on object classification and interacting with all the major stakeholders of my experiment.

Javier Duarte (UC San Diego)

I am an Assistant Professor in experimental high energy physics at UC San Diego and a member of the CMS collaboration at CERN. My research interests include measuring the properties and couplings of the Higgs boson and searching for beyond-the-standard-model particles in LHC data. I am interested in developing machine learning algorithms, real-time trigger systems (with applications to embedded devices), and heterogenous computing architectures for the next generation of high energy physics experiments.

Eric Moreno (California Institute of Technology)
Emmanuel de Bézenac (Sorbonne Université)
Athanasios Vlontzos (Imperial College London)

PhD student at Imperial College, BioMedIAICL Formerly ML Research at Apple, Zeit Medical, NASA FDL, GE Healthcare

Alok Singh (LBNL)
Thomas Klijnsma (Fermilab)
Brad Neuberg (NASA Frontier Development Lab/SETI Institute)

My research interests are machines that see, hear, and plan in order to augment people & society’s capabilities. I am a machine learning software engineer, with a focus on deep learning. I am currently a Staff Machine Learning Engineer with Planet, applying machine and deep learning to remote sensing imagery of Earth's surface. Planet images the entirety of the Earth daily to monitor changes and pinpoint trends. The ultimate goal is to enable a Queryable Earth, indexing physical change on Earth and making it searchable for all. I have a decade and a half experience as a software engineer across such companies as Google & Dropbox, startups, and the open source world. I also have a Machine Learning Research Scientist affiliation with the SETI Institute and NASA’s Frontier Development Lab, applying deep learning to space science and space exploration. Before the SETI Institute I was a Machine Learning Engineer at Dropbox, doing industrial R&D to ship deep learning-powered products to millions of users and across billions of files. I've worn many hats in my career, whether as a tech lead, a product engineer, a startup founder, or a full stack software engineer. I have a long tradition of untraditional, cross-disciplinary innovation across fields. Earlier work includes having started Coworking, which grew into an international grassroots movement to establish a new kind of workspace for the self-employed, with more than 15,000 coworking spaces now open globally. At a startup named Inkling I founded Inkling Habitat, re-imagining interactive digital textbooks for higher education and how they are published by adopting ideas from computer science — Inkling Habitat turned into a multi-million dollar business that was adopted by the world’s major educational publishers, including Pearson & Elsevier. At Google I helped the web blossom into a true application deployment platform through efforts like HTML5. Finally, I worked with Douglas Engelbart, the inventor of the computer mouse & hypertext, on the National Science Foundation-funded HyperScope project to use advanced hypertext to support collaborative teams.

Paul Wright (Stanford University)
Mustafa Mustafa (Berkeley Lab)
David Schmidt (University of Massachusetts Amherst)
Steven Farrell (Lawrence Berkeley National Laboratory)
Hao Sun (CUHK)

More from the Same Authors

  • 2020 : End-to-End Differentiability and Tensor Processing Unit Computing to Accelerate Materials’ Inverse Design »
    HAN LIU · Yuhan Liu · Zhangji Zhao · Samuel Schoenholz · Ekin Dogus Cubuk · Mathieu Bauchy
  • 2020 : On the Effectiveness of Bayesian AutoML methods for Physics Emulators »
    Peetak Mitra · Niccolo Dal Santo · Majid Haghshenas · Shounak Mitra · Conor Daly · David Schmidt
  • 2021 : Data Efficient Domain Adaptation using FiLM »
    Sinjini Mitra · Rushil Anirudh · Jayaraman Thiagarajan · Pavan Turaga
  • 2021 : Unsupervised Attribute Alignment for Characterizing Distribution Shift »
    Matthew Olson · Rushil Anirudh · Jayaraman Thiagarajan · Timo Bremer · Weng-Keen Wong · Shusen Liu
  • 2021 : Distribution Mismatch Correction for Improved Robustness in Deep Neural Networks »
    Alexander Fuchs · Christian Knoll · Franz Pernkopf
  • 2021 : Identification of Enzymatic Active Sites with Unsupervised Language Modelling »
    Loïc Kwate Dassi · Matteo Manica · Daniel Probst · Philippe Schwaller · Yves Gaetan Nana Teukam · Teodoro Laino
  • 2021 : Human-in-the-loop for a Disconnection Aware Retrosynthesis »
    Andrea Byekwaso · Philippe Schwaller · Alain C. Vaucher · Teodoro Laino
  • 2021 : Proximal Biasing for Bayesian Optimization and Characterization of Physical Systems »
    Ryan Roussel · Auralee Edelen
  • 2021 : Particle Graph Autoencoders and Differentiable, Learned Energy Mover's Distance »
    Steven Tsan · Sukanya Krishna · Raghav Kansal · Anthony Aportela · Farouk Mokhtar · Daniel Diaz · Javier Duarte · Maurizio Pierini · jean-roch vlimant
  • 2021 : Explaining machine-learned particle-flow reconstruction »
    Farouk Mokhtar · Raghav Kansal · Daniel Diaz · Javier Duarte · Maurizio Pierini · jean-roch vlimant
  • 2021 : Geometric Priors for Scientific Generative Models in Inertial Confinement Fusion »
    Ankita Shukla · Rushil Anirudh · Eugene Kur · Jayaraman Thiagarajan · Timo Bremer · Brian K Spears · Tammy Ma · Pavan Turaga
  • 2021 : Deep-SWIM: A few-shot learning approach to classify Solar WInd Magnetic field structures »
    Sudeshna Boro Saikia · Hala Lamdouar · Sairam Sundaresan · Anna Jungbluth · Marcella Scoczynski Ribeiro Martins · Anthony Sarah · Andres Munoz-Jaramillo
  • 2021 : Fast Finite Width Neural Tangent Kernel »
    Roman Novak · Jascha Sohl-Dickstein · Samuel Schoenholz
  • 2021 : Reliable Uncertainty Quantification of Deep Learning Models for a Free Electron Laser Scientific Facility »
    Lipi Gupta · Aashwin Mishra · Auralee Edelen
  • 2021 Poster: Smooth Normalizing Flows »
    Jonas Köhler · Andreas Krämer · Frank Noe
  • 2021 Poster: Exploring the Limits of Out-of-Distribution Detection »
    Stanislav Fort · Jie Ren · Balaji Lakshminarayanan
  • 2021 Poster: LEADS: Learning Dynamical Systems that Generalize Across Environments »
    Yuan Yin · Ibrahim Ayed · Emmanuel de Bézenac · Nicolas Baskiotis · Patrick Gallinari
  • 2021 Poster: Automatic Symmetry Discovery with Lie Algebra Convolutional Network »
    Nima Dehmamy · Robin Walters · Yanchen Liu · Dashun Wang · Rose Yu
  • 2020 : Spotlight Talk: Data augmentation strategies to improve reaction yield predictions and estimate uncertainty - Philippe Schwaller, Alain Vaucher, Teodoro Laino and Jean-Louis Reymond »
    Philippe Schwaller
  • 2020 Poster: Deep learning versus kernel learning: an empirical study of loss landscape geometry and the time evolution of the Neural Tangent Kernel »
    Stanislav Fort · Gintare Karolina Dziugaite · Mansheej Paul · Sepideh Kharaghani · Daniel Roy · Surya Ganguli
  • 2020 Poster: Finite Versus Infinite Neural Networks: an Empirical Study »
    Jaehoon Lee · Samuel Schoenholz · Jeffrey Pennington · Ben Adlam · Lechao Xiao · Roman Novak · Jascha Sohl-Dickstein
  • 2020 Spotlight: Finite Versus Infinite Neural Networks: an Empirical Study »
    Jaehoon Lee · Samuel Schoenholz · Jeffrey Pennington · Ben Adlam · Lechao Xiao · Roman Novak · Jascha Sohl-Dickstein
  • 2020 Poster: Stochastic Normalizing Flows »
    Hao Wu · Jonas Köhler · Frank Noe
  • 2020 Poster: Deep Rao-Blackwellised Particle Filters for Time Series Forecasting »
    Richard Kurle · Syama Sundar Rangapuram · Emmanuel de Bézenac · Stephan Günnemann · Jan Gasthaus
  • 2020 Spotlight: Stochastic Normalizing Flows »
    Hao Wu · Jonas Köhler · Frank Noe
  • 2020 Poster: JAX MD: A Framework for Differentiable Physics »
    Samuel Schoenholz · Ekin Dogus Cubuk
  • 2020 Spotlight: JAX MD: A Framework for Differentiable Physics »
    Samuel Schoenholz · Ekin Dogus Cubuk
  • 2020 Poster: Normalizing Kalman Filters for Multivariate Time Series Analysis »
    Emmanuel de Bézenac · Syama Sundar Rangapuram · Konstantinos Benidis · Michael Bohlke-Schneider · Richard Kurle · Lorenzo Stella · Hilaf Hasson · Patrick Gallinari · Tim Januschowski
  • 2019 : Poster Session »
    Matthia Sabatelli · Adam Stooke · Amir Abdi · Paulo Rauber · Leonard Adolphs · Ian Osband · Hardik Meisheri · Karol Kurach · Johannes Ackermann · Matt Benatan · GUO ZHANG · Chen Tessler · Dinghan Shen · Mikayel Samvelyan · Riashat Islam · Murtaza Dalal · Luke Harries · Andrey Kurenkov · Konrad Żołna · Sudeep Dasari · Kristian Hartikainen · Ofir Nachum · Kimin Lee · Markus Holzleitner · Vu Nguyen · Francis Song · Christopher Grimm · Felipe Leno da Silva · Yuping Luo · Yifan Wu · Alex Lee · Thomas Paine · Wei-Yang Qu · Daniel Graves · Yannis Flet-Berliac · Yunhao Tang · Suraj Nair · Matthew Hausknecht · Akhil Bagaria · Simon Schmitt · Bowen Baker · Paavo Parmas · Benjamin Eysenbach · Lisa Lee · Siyu Lin · Daniel Seita · Abhishek Gupta · Riley Simmons-Edler · Yijie Guo · Kevin Corder · Vikash Kumar · Scott Fujimoto · Adam Lerer · Ignasi Clavera Gilaberte · Nicholas Rhinehart · Ashvin Nair · Ge Yang · Lingxiao Wang · Sungryull Sohn · J. Fernando Hernandez-Garcia · Xian Yeow Lee · Rupesh Srivastava · Khimya Khetarpal · Chenjun Xiao · Luckeciano Carvalho Melo · Rishabh Agarwal · Tianhe Yu · Glen Berseth · Devendra Singh Chaplot · Jie Tang · Anirudh Srinivasan · Tharun Kumar Reddy Medini · Aaron Havens · Misha Laskin · Asier Mujika · Rohan Saphal · Joseph Marino · Alex Ray · Joshua Achiam · Ajay Mandlekar · Zhuang Liu · Danijar Hafner · Zhiwen Tang · Ted Xiao · Michael Walton · Jeff Druce · Ferran Alet · Zhang-Wei Hong · Stephanie Chan · Anusha Nagabandi · Hao Liu · Hao Sun · Ge Liu · Dinesh Jayaraman · John Co-Reyes · Sophia Sanborn
  • 2019 : Lunch Break and Posters »
    Xingyou Song · Elad Hoffer · Wei-Cheng Chang · Jeremy Cohen · Jyoti Islam · Yaniv Blumenfeld · Andreas Madsen · Jonathan Frankle · Sebastian Goldt · Satrajit Chatterjee · Abhishek Panigrahi · Alex Renda · Brian Bartoldson · Israel Birhane · Aristide Baratin · Niladri Chatterji · Roman Novak · Jessica Forde · YiDing Jiang · Yilun Du · Linara Adilova · Michael Kamp · Berry Weinstein · Itay Hubara · Tal Ben-Nun · Torsten Hoefler · Daniel Soudry · Hsiang-Fu Yu · Kai Zhong · Yiming Yang · Inderjit Dhillon · Jaime Carbonell · Yanqing Zhang · Dar Gilboa · Johannes Brandstetter · Alexander R Johansen · Gintare Karolina Dziugaite · Raghav Somani · Ari Morcos · Alfredo Kalaitzis · Hanie Sedghi · Lechao Xiao · John Zech · Muqiao Yang · Simran Kaur · Qianli Ma · Yao-Hung Hubert Tsai · Ruslan Salakhutdinov · Sho Yaida · Zachary Lipton · Daniel Roy · Michael Carbin · Florent Krzakala · Lenka Zdeborová · Guy Gur-Ari · Ethan Dyer · Dilip Krishnan · Hossein Mobahi · Samy Bengio · Behnam Neyshabur · Praneeth Netrapalli · Kris Sankaran · Julien Cornebise · Yoshua Bengio · Vincent Michalski · Samira Ebrahimi Kahou · Md Rifat Arefin · Jiri Hron · Jaehoon Lee · Jascha Sohl-Dickstein · Samuel Schoenholz · David Schwab · Dongyu Li · Sang Keun Choe · Henning Petzka · Ashish Verma · Zhichao Lin · Cristian Sminchisescu
  • 2019 : Lunch + Poster Session »
    Frederik Gerzer · Bill Yang Cai · Pieter-Jan Hoedt · Kelly Kochanski · Soo Kyung Kim · Yunsung Lee · Sunghyun Park · Sharon Zhou · Martin Gauch · Jonathan Wilson · Joyjit Chatterjee · Shamindra Shrotriya · Dimitri Papadimitriou · Christian Schön · Valentina Zantedeschi · Gabriella Baasch · Willem Waegeman · Gautier Cosne · Dara Farrell · Brendan Lucier · Letif Mones · Caleb Robinson · Tafara Chitsiga · Victor Kristof · Hari Prasanna Das · Yimeng Min · Alexandra Puchko · Alexandra Luccioni · Kyle Story · Jason Hickey · Yue Hu · Björn Lütjens · Zhecheng Wang · Renzhi Jing · Genevieve Flaspohler · Jingfan Wang · Saumya Sinha · Qinghu Tang · Armi Tiihonen · Ruben Glatt · Muge Komurcu · Jan Drgona · Juan Gomez-Romero · Ashish Kapoor · Dylan J Fitzpatrick · Alireza Rezvanifar · Adrian Albert · Olya (Olga) Irzak · Kara Lamb · Ankur Mahesh · Kiwan Maeng · Frederik Kratzert · Sorelle Friedler · Niccolo Dalmasso · Alex Robson · Lindiwe Malobola · Lucas Maystre · Yu-wen Lin · Surya Karthik Mukkavili · Brian Hutchinson · Alexandre Lacoste · Yanbing Wang · Zhengcheng Wang · Yinda Zhang · Victoria Preston · Jacob Pettit · Draguna Vrabie · Miguel Molina-Solana · Tonio Buonassisi · Andrew Annex · Tunai P Marques · Catalin Voss · Johannes Rausch · Max Evans
  • 2019 : Morning Coffee Break & Poster Session »
    Eric Metodiev · Keming Zhang · Markus Stoye · Randy Churchill · Soumalya Sarkar · Miles Cranmer · Johann Brehmer · Danilo Jimenez Rezende · Peter Harrington · AkshatKumar Nigam · Nils Thuerey · Lukasz Maziarka · Alvaro Sanchez Gonzalez · Atakan Okan · James Ritchie · N. Benjamin Erichson · Harvey Cheng · Peihong Jiang · Seong Ho Pahng · Samson Koelle · Sami Khairy · Adrian Pol · Rushil Anirudh · Jannis Born · Benjamin Sanchez-Lengeling · Brian Timar · Rhys Goodall · Tamás Kriváchy · Lu Lu · Thomas Adler · Nathaniel Trask · Noëlie Cherrier · Tomohiko Konno · Muhammad Kasim · Tobias Golling · Zaccary Alperstein · Andrei Ustyuzhanin · James Stokes · Anna Golubeva · Ian Char · Ksenia Korovina · Youngwoo Cho · Chanchal Chatterjee · Tom Westerhout · Gorka Muñoz-Gil · Juan Zamudio-Fernandez · Jennifer Wei · Brian Lee · Johannes Kofler · Bruce Power · Nikita Kazeev · Andrey Ustyuzhanin · Artem Maevskiy · Pascal Friederich · Arash Tavakoli · Willie Neiswanger · Bohdan Kulchytskyy · sindhu hari · Paul Leu · Paul Atzberger
  • 2019 : Poster and Coffee Break 1 »
    Aaron Sidford · Aditya Mahajan · Alejandro Ribeiro · Alex Lewandowski · Ali H Sayed · Ambuj Tewari · Angelika Steger · Anima Anandkumar · Asier Mujika · Hilbert J Kappen · Bolei Zhou · Byron Boots · Chelsea Finn · Chen-Yu Wei · Chi Jin · Ching-An Cheng · Christina Yu · Clement Gehring · Craig Boutilier · Dahua Lin · Daniel McNamee · Daniel Russo · David Brandfonbrener · Denny Zhou · Devesh Jha · Diego Romeres · Doina Precup · Dominik Thalmeier · Eduard Gorbunov · Elad Hazan · Elena Smirnova · Elvis Dohmatob · Emma Brunskill · Enrique Munoz de Cote · Ethan Waldie · Florian Meier · Florian Schaefer · Ge Liu · Gergely Neu · Haim Kaplan · Hao Sun · Hengshuai Yao · Jalaj Bhandari · James A Preiss · Jayakumar Subramanian · Jiajin Li · Jieping Ye · Jimmy Smith · Joan Bas Serrano · Joan Bruna · John Langford · Jonathan Lee · Jose A. Arjona-Medina · Kaiqing Zhang · Karan Singh · Yuping Luo · Zafarali Ahmed · Zaiwei Chen · Zhaoran Wang · Zhizhong Li · Zhuoran Yang · Ziping Xu · Ziyang Tang · Yi Mao · David Brandfonbrener · Shirli Di-Castro · Riashat Islam · Zuyue Fu · Abhishek Naik · Saurabh Kumar · Benjamin Petit · Angeliki Kamoutsi · Simone Totaro · Arvind Raghunathan · Rui Wu · Donghwan Lee · Dongsheng Ding · Alec Koppel · Hao Sun · Christian Tjandraatmadja · Mahdi Karami · Jincheng Mei · Chenjun Xiao · Junfeng Wen · Zichen (Vincent) Zhang · Ross Goroshin · Mohammad Pezeshki · Jiaqi Zhai · Philip Amortila · Shuo Huang · Mariya Vasileva · El houcine Bergou · Adel Ahmadyan · Haoran Sun · Sheng Zhang · Lukas Gruber · Yuanhao Wang · Tetiana Parshakova
  • 2019 : JAX, M.D.: End-to-End Differentiable, Hardware Accelerated, Molecular Dynamics in Pure Python »
    Samuel Schoenholz
  • 2019 : Towards physics-informed deep learning for turbulent flow prediction »
    Rose Yu
  • 2019 : Poster Session »
    Jonathan Scarlett · Piotr Indyk · Ali Vakilian · Adrian Weller · Partha P Mitra · Benjamin Aubin · Bruno Loureiro · Florent Krzakala · Lenka Zdeborová · Kristina Monakhova · Joshua Yurtsever · Laura Waller · Hendrik Sommerhoff · Michael Moeller · Rushil Anirudh · Shuang Qiu · Xiaohan Wei · Zhuoran Yang · Jayaraman Thiagarajan · Salman Asif · Michael Gillhofer · Johannes Brandstetter · Sepp Hochreiter · Felix Petersen · Dhruv Patel · Assad Oberai · Akshay Kamath · Sushrut Karmalkar · Eric Price · Ali Ahmed · Zahra Kadkhodaie · Sreyas Mohan · Eero Simoncelli · Carlos Fernandez-Granda · Oscar Leong · Wesam Sakla · Rebecca Willett · Stephan Hoyer · Jascha Sohl-Dickstein · Samuel Greydanus · Gauri Jagatap · Chinmay Hegde · Michael Kellman · Jonathan Tamir · Nouamane Laanait · Ousmane Dia · Mirco Ravanelli · Jonathan Binas · Negar Rostamzadeh · Shirin Jalali · Tiantian Fang · Alex Schwing · Sébastien Lachapelle · Philippe Brouillard · Tristan Deleu · Simon Lacoste-Julien · Stella Yu · Arya Mazumdar · Ankit Singh Rawat · Yue Zhao · Jianshu Chen · Xiaoyang Li · Hubert Ramsauer · Gabrio Rizzuti · Nikolaos Mitsakos · Dingzhou Cao · Thomas Strohmer · Yang Li · Pei Peng · Gregory Ongie
  • 2019 Poster: Understanding the Representation Power of Graph Neural Networks in Learning Graph Topology »
    Nima Dehmamy · Albert-Laszlo Barabasi · Rose Yu
  • 2019 Poster: Wide Neural Networks of Any Depth Evolve as Linear Models Under Gradient Descent »
    Jaehoon Lee · Lechao Xiao · Samuel Schoenholz · Yasaman Bahri · Roman Novak · Jascha Sohl-Dickstein · Jeffrey Pennington
  • 2019 Poster: Modeling Dynamic Functional Connectivity with Latent Factor Gaussian Processes »
    Lingge Li · Dustin Pluta · Babak Shahbaba · Norbert Fortin · Hernando Ombao · Pierre Baldi
  • 2019 Poster: NAOMI: Non-Autoregressive Multiresolution Sequence Imputation »
    Yukai Liu · Rose Yu · Stephan Zheng · Eric Zhan · Yisong Yue
  • 2019 Poster: MetaInit: Initializing learning by learning to initialize »
    Yann Dauphin · Samuel Schoenholz
  • 2019 Poster: Policy Continuation with Hindsight Inverse Dynamics »
    Hao Sun · Zhizhong Li · Xiaotong Liu · Bolei Zhou · Dahua Lin
  • 2019 Spotlight: Policy Continuation with Hindsight Inverse Dynamics »
    Hao Sun · Zhizhong Li · Xiaotong Liu · Bolei Zhou · Dahua Lin
  • 2019 Poster: Large Scale Structure of Neural Network Loss Landscapes »
    Stanislav Fort · Stanislaw Jastrzebski
  • 2018 : Coffee break + posters 2 »
    Jan Kremer · Erik McDermott · Brandon Carter · Albert Zeyer · Andreas Krug · Paul Pu Liang · Katherine Lee · Dominika Basaj · Abelino Jimenez · Lisa Fan · Gautam Bhattacharya · Tzeviya S Fuchs · David Gifford · Loren Lugosch · Orhan Firat · Benjamin Baer · JAHANGIR ALAM · Jamin Shin · Mirco Ravanelli · Paul Smolensky · Zining Zhu · Hamid Eghbal-zadeh · Skyler Seto · Imran Sheikh · Joao Felipe Santos · Yonatan Belinkov · Nadir Durrani · Oiwi Parker Jones · Shuai Tang · André Merboldt · Titouan Parcollet · Wei-Ning Hsu · Krishna Pillutla · Ehsan Hosseini-Asl · Monica Dinculescu · Alexander Amini · Ying Zhang · Taoli Cheng · Alain Tapp
  • 2018 : Contributed Work »
    Thaer Moustafa Dieb · Aditya Balu · Amir H. Khasahmadi · Viraj Shah · Boris Knyazev · Payel Das · Garrett Goh · Georgy Derevyanko · Gianni De Fabritiis · Reiko Hagawa · John Ingraham · David Belanger · Jialin Song · Kim Nicoli · Miha Skalic · Michelle Wu · Niklas Gebauer · Peter Bjørn Jørgensen · Ryan-Rhys Griffiths · Shengchao Liu · Sheshera Mysore · Hai Leong Chieu · Philippe Schwaller · Bart Olsthoorn · Bianca-Cristina Cristescu · Wei-Cheng Tseng · Seongok Ryu · Iddo Drori · Kevin Yang · Soumya Sanyal · Zois Boukouvalas · Rishi Bedi · Arindam Paul · Sambuddha Ghosal · Daniil Bash · Clyde Fare · Zekun Ren · Ali Oskooei · Minn Xuan Wong · Paul Sinz · Théophile Gaudin · Wengong Jin · Paul Leu
  • 2017 : Poster session 2 and coffee break »
    Sean McGregor · Tobias Hagge · Markus Stoye · Trang Thi Minh Pham · Seungkyun Hong · Amir Farbin · Sungyong Seo · Susana Zoghbi · Daniel George · Stanislav Fort · Steven Farrell · Arthur Pajot · Kyle Pearson · Adam McCarthy · Cecile Germain · Dustin Anderson · Mario Lezcano Casado · Mayur Mudigonda · Benjamin Nachman · Luke de Oliveira · Li Jing · Lingge Li · Soo Kyung Kim · Timothy Gebhard · Tom Zahavy
  • 2017 : Poster session 1 and coffee break »
    Tobias Hagge · Sean McGregor · Markus Stoye · Trang Thi Minh Pham · Seungkyun Hong · Amir Farbin · Sungyong Seo · Susana Zoghbi · Daniel George · Stanislav Fort · Steven Farrell · Arthur Pajot · Kyle Pearson · Adam McCarthy · Cecile Germain · Dustin Anderson · Mario Lezcano Casado · Mayur Mudigonda · Benjamin Nachman · Luke de Oliveira · Li Jing · Lingge Li · Soo Kyung Kim · Timothy Gebhard · Tom Zahavy
  • 2017 : Poster session 1 »
    Van-Doan Nguyen · Stephan Eismann · Haozhen Wu · Garrett Goh · Kristina Preuer · Thomas Unterthiner · Matthew Ragoza · Tien-Lam PHAM · Günter Klambauer · Andrea Rocchetto · Maxwell Hutchinson · Qian Yang · Rafael Gomez-Bombarelli · Sheshera Mysore · Brooke Husic · Ryan-Rhys Griffiths · Masashi Tsubaki · Emma Strubell · Philippe Schwaller · Théophile Gaudin · Michael Brenner · Li Li
  • 2017 : Contributed talk 2: A Foray into Using Neural Network Control Policies For Rapid Switching Between Beam Parameters in a Free Electron Laser »
    Auralee Edelen
  • 2017 : Poster spotlights »
    Emma Strubell · Garrett Goh · Masashi Tsubaki · Théophile Gaudin · Philippe Schwaller · Matthew Ragoza · Rafael Gomez-Bombarelli
  • 2017 Poster: Mean Field Residual Networks: On the Edge of Chaos »
    Ge Yang · Samuel Schoenholz
  • 2017 Poster: Resurrecting the sigmoid in deep learning through dynamical isometry: theory and practice »
    Jeffrey Pennington · Samuel Schoenholz · Surya Ganguli