Timezone: »
Author Information
Eric Metodiev (MIT)
I am interested in the intersection of machine learning and particle physics. I work on problems motivated by the Large Hadron Collider at CERN. My research uses insights from quantum field theory to develop new data-driven techniques for collider physics (and vice versa!).
Keming Zhang (UC Berkeley)
Markus Stoye (Reexen)
- Head of deep learning in REEXEN - Machine learning representative at CERN laboratory for CMS experiment
Randy Churchill (Princeton Plasma Physics Laboratory)
Soumalya Sarkar (United Technologies Research Center)
Miles Cranmer (Princeton University)
Miles Cranmer is an Astro PhD candidate trying to accelerate astrophysics with AI. Miles is from Canada and did his undergraduate in Physics at McGill. He is deeply interested in the automation of science, particularly aspects that are not yet tractable with existing machine learning, such as experiment planning, simulation, and theory. He works on symbolic regression, graph neural networks, normalizing flows, and learned simulation. He is hugely interested in symbolic ML, since, as he argues, symbolic models seem to be a surprisingly efficient basis for describing our universe.
Johann Brehmer (New York University)
Danilo Jimenez Rezende (Google DeepMind)
Peter Harrington (Lawrence Berkeley National Laboratory)
AkshatKumar Nigam (University Of Toronto)
Nils Thuerey (Technical University of Munich)
Lukasz Maziarka (Jagiellonian University)
Alvaro Sanchez Gonzalez (DeepMind)
Atakan Okan (New York University)
James Ritchie (University of Edinburgh)
N. Benjamin Erichson (University of California, Berkeley)
Harvey Cheng (SigOpt)
I am a research engineer at SigOpt. Currently, I am interested in problems in Bayesian optimization and reinforcement learning. I obtained my Ph.D. in electrical engineering from Princeton University, where I was advised by Prof. Warren B. Powell. My doctoral studies focused on approximate dynamic programming, stochastic optimization, and optimal learning, with an application in managing grid-level battery storage.
Peihong Jiang (Brown University)
Seong Ho Pahng (Harvard University)
Samson Koelle (University of Washington)
Sami Khairy (Illinois Institute of Technology)
Sami Khairy’s research interests span the broad areas of statistical learning, reinforcement learning, next generation AI powered wireless networks resource management and protocol design, and statistical signal processing. He received the M.S. degree in Electrical Engineering in 2016 from Illinois Institute of Technology, Chicago, IL, where he is currently working towards the Ph.D. degree. Sami received a Fulbright Predoctoral Scholarship from JACEE and the U.S. Department of State in 2015, and the Starr/Fieldhouse Research Fellowship from IIT in 2019. He is an IEEE student member and a member of IEEE ComSoc and IEEE HKN.
Adrian Pol (Université Paris Saclay / CERN)
Rushil Anirudh (Lawrence Livermore National Laboratory)
Jannis Born (ETH Zürich)
Benjamin Sanchez-Lengeling (Harvard University)
Brian Timar (Caltech)
Rhys Goodall (University of Cambridge)
Tamás Kriváchy (University of Geneva)
Machine Learning <3 Quantum Information
Lu Lu (Brown University)
Thomas Adler (LIT AI Lab / University Linz)
Nathaniel Trask (Sandia National Laboratories)
Noëlie Cherrier (CEA)
Tomohiko Konno (National Institute of Information and Commutations Technologies)
Ph.D. from The University of Tokyo. Worked Research Fellow at Princeton University. Deep learning Physics Game theory Complex networks Math
Muhammad Kasim (University of Oxford)
Tobias Golling (University of Geneva)
Zaccary Alperstein (University of British Columbia)
Andrei Ustyuzhanin (National Research University Higher School of Economics)
James Stokes (Simons Foundation)
Anna Golubeva (Perimeter Institute for Theoretical Physics)
Ian Char (Carnegie Mellon University)
Ksenia Korovina (Carnegie Mellon University)
Youngwoo Cho (Korea University)
Youngwoo Cho is a Ph.D. student in the Graduate School of Artificial Intelligence at KAIST. His interest is Deep Learning applied natural science.
Chanchal Chatterjee (Google)
Tom Westerhout (Radboud University)
Gorka Muñoz-Gil (ICFO)
Juan Zamudio-Fernandez (NYU)
Jennifer Wei (Google Research)
Brian Lee (Google)
Johannes Kofler (LIT AI Lab / University Linz)
Bruce Power (Chevron Energy Technology Company)
Nikita Kazeev (The Sapienza University of Rome)
Andrey Ustyuzhanin (NRU HSE)
Artem Maevskiy (National Research University Higher School of Economics)
Pascal Friederich (University of Toronto)
Arash Tavakoli (Imperial College London)
Willie Neiswanger (Carnegie Mellon University)
Bohdan Kulchytskyy (1qbit)
sindhu hari (Quantiphi Analytics)
Paul Leu (University of Pittsburgh)
Paul Atzberger (University of California Santa Barbara)
Paul J. Atzberger studied mathematics at the Courant Institute at New York University where he received his PhD in 2003. Subsequently, from 2003 - 2006 he was a postdoctoral fellow at Rensselaer Polytechnic Institute. He joined the faculty at the University of California Santa Barbara in 2006. His research is in the area of stochastic analysis and computational methods for diverse applications.
More from the Same Authors
-
2020 : Learning Mesh-Based Simulation with Graph Networks »
Tobias Pfaff · Meire Fortunato · Alvaro Sanchez Gonzalez · Peter Battaglia -
2020 : Constraint active search for experimental design »
Gustavo Malkomes · Harvey Cheng · Michael McCourt -
2021 : Personalized Benchmarking with the Ludwig Benchmarking Toolkit »
Avanika Narayan · Piero Molino · Karan Goel · Willie Neiswanger · Christopher Ré -
2021 : Systematic Evaluation of Causal Discovery in Visual Model Based Reinforcement Learning »
Nan Rosemary Ke · Aniket Didolkar · Sarthak Mittal · Anirudh Goyal · Guillaume Lajoie · Stefan Bauer · Danilo Jimenez Rezende · Yoshua Bengio · Chris Pal · Michael Mozer -
2021 : Synthetic Benchmarks for Scientific Research in Explainable Machine Learning »
Yang Liu · Sujay Khandagale · Colin White · Willie Neiswanger -
2021 : Data Efficient Domain Adaptation using FiLM »
Sinjini Mitra · Rushil Anirudh · Jayaraman Thiagarajan · Pavan Turaga -
2021 : Active site sequence representation of human kinases outperforms full sequence for affinity prediction »
Jannis Born · Tien Huynh · Astrid Stroobants · Wendy Cornell · Matteo Manica -
2021 : Unsupervised Attribute Alignment for Characterizing Distribution Shift »
Matthew Olson · Rushil Anirudh · Jayaraman Thiagarajan · Timo Bremer · Weng-Keen Wong · Shusen Liu -
2021 : Stronger symbolic summary statistics for the LHC »
Nathalie Soybelman · Anja Butter · Tilman Plehn · Johann Brehmer -
2021 : Equivariant and Modular DeepSets with Applications in Cluster Cosmology »
Leander Thiele · Miles Cranmer · Shirley Ho · David Spergel -
2021 : Geometric Priors for Scientific Generative Models in Inertial Confinement Fusion »
Ankita Shukla · Rushil Anirudh · Eugene Kur · Jayaraman Thiagarajan · Timo Bremer · Brian K Spears · Tammy Ma · Pavan Turaga -
2021 : Turbo-Sim: a generalised generative model with a physical latent space »
Guillaume Quétant · Vitaliy Kinakh · Tobias Golling · Slava Voloshynovskiy -
2021 : Implicit Riemannian Concave Potential Maps »
Danilo Jimenez Rezende · Sébastien Racanière -
2021 : Implicit Riemannian Concave Potential Maps »
Danilo Jimenez Rezende · Sébastien Racanière -
2021 : Funnels: Exact maximum likelihood with dimensionality reduction »
Samuel Klein · John Raine · Tobias Golling · Slava Voloshynovskiy · Sebastion Pina-Otey -
2021 : Generation of data on discontinuous manifolds via continuous stochastic non-invertible networks »
Mariia Drozdova · Vitaliy Kinakh · Guillaume Quétant · Tobias Golling · Slava Voloshynovskiy -
2021 : Information-theoretic stochastic contrastive conditional GAN: InfoSCC-GAN »
Vitaliy Kinakh · Mariia Drozdova · Guillaume Quétant · Tobias Golling · Slava Voloshynovskiy -
2021 : BATS: Best Action Trajectory Stitching »
Ian Char · Viraj Mehta · Adam Villaflor · John Dolan · Jeff Schneider -
2022 : Leveraging the Stochastic Predictions of Bayesian Neural Networks for Fluid Simulations »
Maximilian Mueller · Robin Greif · Frank Jenko · Nils Thuerey -
2022 : Offline Model-Based Reinforcement Learning for Tokamak Control »
Ian Char · Joseph Abbate · Laszlo Bardoczi · Mark Boyer · Youngseog Chung · Rory Conlin · Keith Erickson · Viraj Mehta · Nathan Richner · Egemen Kolemen · Jeff Schneider -
2022 : Decorrelation with Conditional Normalizing Flows »
Samuel Klein · Tobias Golling -
2022 : Learning Similarity Metrics for Volumetric Simulations with Multiscale CNNs »
Georg Kohl · Liwei Chen · Nils Thuerey -
2022 : A Neural Network Subgrid Model of the Early Stages of Planet Formation »
Thomas Pfeil · Miles Cranmer · Shirley Ho · Philip Armitage · Tilman Birnstiel · Hubert Klahr -
2022 : One Network to Approximate Them All: Amortized Variational Inference of Ising Ground States »
Sebastian Sanokowski · Wilhelm Berghammer · Johannes Kofler · Sepp Hochreiter · Sebastian Lehner -
2022 : Closing the resolution gap in Lyman alpha simulations with deep learning »
Cooper Jacobus · Peter Harrington · Zarija Lukić -
2022 : Astronomical Image Coaddition with Bundle-Adjusting Radiance Fields »
Harlan Hutton · Harshitha Palegar · Shirley Ho · Miles Cranmer · Peter Melchior · Jenna Eubank -
2022 : Learning Integrable Dynamics with Action-Angle Networks »
Ameya Daigavane · Arthur Kosmala · Miles Cranmer · Tess Smidt · Shirley Ho -
2022 : Using Shadows to Learn Ground State Properties of Quantum Hamiltonians »
Viet T. Tran · Laura Lewis · Johannes Kofler · Hsin-Yuan Huang · Richard Kueng · Sepp Hochreiter · Sebastian Lehner -
2022 : Score Matching via Differentiable Physics »
Benjamin Holzschuh · Simona Vegetti · Nils Thuerey -
2022 : Toward Semantic History Compression for Reinforcement Learning »
Fabian Paischer · Thomas Adler · Andreas Radler · Markus Hofmarcher · Sepp Hochreiter -
2022 : Pre-training via Denoising for Molecular Property Prediction »
Sheheryar Zaidi · Michael Schaarschmidt · James Martens · Hyunjik Kim · Yee Whye Teh · Alvaro Sanchez Gonzalez · Peter Battaglia · Razvan Pascanu · Jonathan Godwin -
2022 : Generative Modeling of High-resolution Global Precipitation Forecasts »
James Duncan · Peter Harrington · Shashank Subramanian -
2022 : FourCastNet: A practical introduction to a state-of-the-art deep learning global weather emulator »
Jaideep Pathak · Shashank Subramanian · Peter Harrington · Thorsten Kurth · Andre Graubner · Morteza Mardani · David Hall · Karthik Kashinath · Anima Anandkumar -
2022 : Foundation Models for History Compression in Reinforcement Learning »
Fabian Paischer · Thomas Adler · Andreas Radler · Markus Hofmarcher · Sepp Hochreiter -
2022 : Toward Semantic History Compression for Reinforcement Learning »
Fabian Paischer · Thomas Adler · Andreas Radler · Markus Hofmarcher · Sepp Hochreiter -
2022 : Assessing multi-objective optimization of molecules with genetic algorithms against relevant baselines »
Nathanael Kusanda · Gary Tom · Riley Hickman · AkshatKumar Nigam · Kjell Jorner · Alan Aspuru-Guzik -
2022 : A deep learning and data archaeology approach for mosquito repellent discovery »
Jennifer Wei · Marnix Vlot · Benjamin Sanchez-Lengeling · Brian Lee · Luuk Berning · Martijn Vos · Rob Henderson · Wesley Qian · D. Michael Ando · Kurt Groetsch · Richard Gerkin · Alexander Wiltschko · Koen Dechering -
2022 : Foundation Models for History Compression in Reinforcement Learning »
Fabian Paischer · Thomas Adler · Andreas Radler · Markus Hofmarcher · Sepp Hochreiter -
2023 Poster: Characterizing Scaling and Transfer Learning of Neural Networks for Scientific Machine Learning »
Shashank Subramanian · Peter Harrington · Kurt Keutzer · Wahid Bhimji · Dmitriy Morozov · Michael Mahoney · Amir Gholami -
2023 Poster: PID-Inspired Inductive Biases for Deep Reinforcement Learning in Partially Observable Control Tasks »
Ian Char · Jeff Schneider -
2023 Poster: Discovering Representations for Transfer with Successor Features and the Deep Option Keyboard »
Wilka Carvalho Carvalho · Andre Saraiva · Angelos Filos · Andrew Lampinen · Loic Matthey · Richard L Lewis · Honglak Lee · Satinder Singh · Danilo Jimenez Rezende · Daniel Zoran -
2023 Poster: Structure preserving reversible and irreversible bracket dynamics for deep graph neural networks »
Anthony Gruber · Kookjin Lee · Nathaniel Trask -
2023 Poster: Solving Inverse Physics Problems with Score Matching »
Benjamin Holzschuh · Simona Vegetti · Nils Thuerey -
2023 Poster: SUPA: A Lightweight Diagnostic Simulator for Machine Learning in Particle Physics »
Atul Kumar Sinha · Daniele Paliotta · Bálint Máté · John Raine · Tobias Golling · François Fleuret -
2023 Poster: Datasets and Benchmarks for Nanophotonic Structure and Parametric Design Simulations »
Jungtaek Kim · Mingxuan Li · Oliver Hinder · Paul Leu -
2023 Poster: Semantic HELM: An Interpretable Memory for Reinforcement Learning »
Fabian Paischer · Thomas Adler · Markus Hofmarcher · Sepp Hochreiter -
2023 Workshop: AI for Science: from Theory to Practice »
Yuanqi Du · Max Welling · Yoshua Bengio · Marinka Zitnik · Carla Gomes · Jure Leskovec · Maria Brbic · Wenhao Gao · Kexin Huang · Ziming Liu · Rocío Mercado · Miles Cranmer · Shengchao Liu · Lijing Wang -
2023 Workshop: AI for Accelerated Materials Design (AI4Mat-2023) »
Santiago Miret · Benjamin Sanchez-Lengeling · Jennifer Wei · Vineeth Venugopal · Marta Skreta · N M Anoop Krishnan -
2022 Spotlight: Inverse Design for Fluid-Structure Interactions using Graph Network Simulators »
Kelsey Allen · Tatiana Lopez-Guevara · Kimberly Stachenfeld · Alvaro Sanchez Gonzalez · Peter Battaglia · Jessica Hamrick · Tobias Pfaff -
2022 Spotlight: Lightning Talks 4B-1 »
Alexandra Senderovich · Zhijie Deng · Navid Ansari · Xuefei Ning · Yasmin Salehi · Xiang Huang · Chenyang Wu · Kelsey Allen · Jiaqi Han · Nikita Balagansky · Tatiana Lopez-Guevara · Tianci Li · Zhanhong Ye · Zixuan Zhou · Feng Zhou · Ekaterina Bulatova · Daniil Gavrilov · Wenbing Huang · Dennis Giannacopoulos · Hans-peter Seidel · Anton Obukhov · Kimberly Stachenfeld · Hongsheng Liu · Jun Zhu · Junbo Zhao · Hengbo Ma · Nima Vahidi Ferdowsi · Zongzhang Zhang · Vahid Babaei · Jiachen Li · Alvaro Sanchez Gonzalez · Yang Yu · Shi Ji · Maxim Rakhuba · Tianchen Zhao · Yiping Deng · Peter Battaglia · Josh Tenenbaum · Zidong Wang · Chuang Gan · Changcheng Tang · Jessica Hamrick · Kang Yang · Tobias Pfaff · Yang Li · Shuang Liang · Min Wang · Huazhong Yang · Haotian CHU · Yu Wang · Fan Yu · Bei Hua · Lei Chen · Bin Dong -
2022 Spotlight: Single Model Uncertainty Estimation via Stochastic Data Centering »
Jayaraman Thiagarajan · Rushil Anirudh · Vivek Sivaraman Narayanaswamy · Timo Bremer -
2022 Workshop: AI for Accelerated Materials Design (AI4Mat) »
Santiago Miret · Marta Skreta · Zamyla Morgan-Chan · Benjamin Sanchez-Lengeling · Shyue Ping Ong · Alan Aspuru-Guzik -
2022 Poster: Scale-invariant Learning by Physics Inversion »
Philipp Holl · Vladlen Koltun · Nils Thuerey -
2022 Poster: Single Model Uncertainty Estimation via Stochastic Data Centering »
Jayaraman Thiagarajan · Rushil Anirudh · Vivek Sivaraman Narayanaswamy · Timo Bremer -
2022 Poster: Inverse Design for Fluid-Structure Interactions using Graph Network Simulators »
Kelsey Allen · Tatiana Lopez-Guevara · Kimberly Stachenfeld · Alvaro Sanchez Gonzalez · Peter Battaglia · Jessica Hamrick · Tobias Pfaff -
2022 Poster: Guaranteed Conservation of Momentum for Learning Particle-based Fluid Dynamics »
Lukas Prantl · Benjamin Ummenhofer · Vladlen Koltun · Nils Thuerey -
2022 Poster: Flowification: Everything is a normalizing flow »
Bálint Máté · Samuel Klein · Tobias Golling · François Fleuret -
2022 Poster: ULNeF: Untangled Layered Neural Fields for Mix-and-Match Virtual Try-On »
Igor Santesteban · Miguel Otaduy · Nils Thuerey · Dan Casas -
2022 Poster: Exploration via Planning for Information about the Optimal Trajectory »
Viraj Mehta · Ian Char · Joseph Abbate · Rory Conlin · Mark Boyer · Stefano Ermon · Jeff Schneider · Willie Neiswanger -
2021 : Nils Thuerey »
Nils Thuerey -
2021 : Implicit Riemannian Concave Potential Maps »
Danilo Jimenez Rezende · Sébastien Racanière -
2021 Poster: Beyond Pinball Loss: Quantile Methods for Calibrated Uncertainty Quantification »
Youngseog Chung · Willie Neiswanger · Ian Char · Jeff Schneider -
2021 Poster: Noisy Recurrent Neural Networks »
Soon Hoe Lim · N. Benjamin Erichson · Liam Hodgkinson · Michael Mahoney -
2021 Poster: Stateful ODE-Nets using Basis Function Expansions »
Alejandro Queiruga · N. Benjamin Erichson · Liam Hodgkinson · Michael Mahoney -
2021 : Coding Session 3 »
Shirley Ho · Miles Cranmer -
2021 : The Problem with Deep Learning for Physics (and how to fix it) »
Miles Cranmer · Shirley Ho -
2021 : Accelerating Simulations in Physics with Deep Learning »
Miles Cranmer · Shirley Ho -
2021 : Coding Session »
Shirley Ho · Miles Cranmer -
2021 : Physics-Informed Inductive Biases in Deep Learning »
Miles Cranmer · Shirley Ho -
2021 Tutorial: ML for Physics and Physics for ML »
Shirley Ho · Miles Cranmer -
2021 : The Intersection of ML and Physics »
Shirley Ho · Miles Cranmer -
2020 : Liwei Chen - Deep Learning Surrogates for Computational Fluid Dynamics »
Nils Thuerey -
2020 : Invited Talk: Benjamin Sanchez-Lengeling - Evaluating Attribution of Molecules with Graph Neural Networks »
Benjamin Sanchez-Lengeling -
2020 Workshop: Machine Learning for Molecules »
José Miguel Hernández-Lobato · Matt Kusner · Brooks Paige · Marwin Segler · Jennifer Wei -
2020 : Nils Thuerey - Lead the Way! Deep Learning via Differentiable Simulations »
Nils Thuerey -
2020 : Contributed talk - Unsupervised Resource Allocation with Graph Neural Networks »
Miles Cranmer -
2020 : Oral 01: phiflow - A differentiable PDE solving framework for deep learning via physical simulations »
Nils Thuerey -
2020 Poster: Flows for simultaneous manifold learning and density estimation »
Johann Brehmer · Kyle Cranmer -
2020 Poster: Discovering Symbolic Models from Deep Learning with Inductive Biases »
Miles Cranmer · Alvaro Sanchez Gonzalez · Peter Battaglia · Rui Xu · Kyle Cranmer · David Spergel · Shirley Ho -
2020 Poster: Solver-in-the-Loop: Learning from Differentiable Physics to Interact with Iterative PDE-Solvers »
Kiwon Um · Robert Brand · Yun (Raymond) Fei · Philipp Holl · Nils Thuerey -
2020 Poster: Evaluating Attribution for Graph Neural Networks »
Benjamin Sanchez-Lengeling · Jennifer Wei · Brian Lee · Emily Reif · Peter Wang · Wesley Qian · Kevin McCloskey · Lucy Colwell · Alexander Wiltschko -
2020 Poster: Black-Box Optimization with Local Generative Surrogates »
Sergey Shirobokov · Vladislav Belavin · Michael Kagan · Andrei Ustyuzhanin · Atilim Gunes Baydin -
2020 Poster: CogMol: Target-Specific and Selective Drug Design for COVID-19 Using Deep Generative Models »
Vijil Chenthamarakshan · Payel Das · Samuel Hoffman · Hendrik Strobelt · Inkit Padhi · Kar Wai Lim · Benjamin Hoover · Matteo Manica · Jannis Born · Teodoro Laino · Aleksandra Mojsilovic -
2019 : Equivariant Hamiltonian Flows »
Danilo Jimenez Rezende -
2019 : Metric Methods with Open Collider Data »
Eric Metodiev -
2019 : Learning Symbolic Physics with Graph Networks »
Miles Cranmer -
2019 : Afternoon Coffee Break & Poster Session »
Heidi Komkov · Stanislav Fort · Zhaoyou Wang · Rose Yu · Ji Hwan Park · Samuel Schoenholz · Taoli Cheng · Ryan-Rhys Griffiths · Chase Shimmin · Surya Karthik Mukkavili · Philippe Schwaller · Christian Knoll · Yangzesheng Sun · Keiichi Kisamori · Gavin Graham · Gavin Portwood · Hsin-Yuan Huang · Paul Novello · Moritz Munchmeyer · Anna Jungbluth · Daniel Levine · Ibrahim Ayed · Steven Atkinson · Jan Hermann · Peter Grönquist · · Priyabrata Saha · Yannik Glaser · Lingge Li · Yutaro Iiyama · Rushil Anirudh · Maciej Koch-Janusz · Vikram Sundar · Francois Lanusse · Auralee Edelen · Jonas Köhler · Jacky H. T. Yip · jiadong guo · Xiangyang Ju · Adi Hanuka · Adrian Albert · Valentina Salvatelli · Mauro Verzetti · Javier Duarte · Eric Moreno · Emmanuel de Bézenac · Athanasios Vlontzos · Alok Singh · Thomas Klijnsma · Brad Neuberg · Paul Wright · Mustafa Mustafa · David Schmidt · Steven Farrell · Hao Sun -
2019 : Hamiltonian Graph Networks with ODE Integrators »
Alvaro Sanchez Gonzalez -
2019 : Panel »
Sanja Fidler · Josh Tenenbaum · Tatiana López-Guevara · Danilo Jimenez Rezende · Niloy Mitra -
2019 : Poster Session »
Jonathan Scarlett · Piotr Indyk · Ali Vakilian · Adrian Weller · Partha P Mitra · Benjamin Aubin · Bruno Loureiro · Florent Krzakala · Lenka Zdeborová · Kristina Monakhova · Joshua Yurtsever · Laura Waller · Hendrik Sommerhoff · Michael Moeller · Rushil Anirudh · Shuang Qiu · Xiaohan Wei · Zhuoran Yang · Jayaraman Thiagarajan · Salman Asif · Michael Gillhofer · Johannes Brandstetter · Sepp Hochreiter · Felix Petersen · Dhruv Patel · Assad Oberai · Akshay Kamath · Sushrut Karmalkar · Eric Price · Ali Ahmed · Zahra Kadkhodaie · Sreyas Mohan · Eero Simoncelli · Carlos Fernandez-Granda · Oscar Leong · Wesam Sakla · Rebecca Willett · Stephan Hoyer · Jascha Sohl-Dickstein · Sam Greydanus · Gauri Jagatap · Chinmay Hegde · Michael Kellman · Jonathan Tamir · Nouamane Laanait · Ousmane Dia · Mirco Ravanelli · Jonathan Binas · Negar Rostamzadeh · Shirin Jalali · Tiantian Fang · Alex Schwing · Sébastien Lachapelle · Philippe Brouillard · Tristan Deleu · Simon Lacoste-Julien · Stella Yu · Arya Mazumdar · Ankit Singh Rawat · Yue Zhao · Jianshu Chen · Xiaoyang Li · Hubert Ramsauer · Gabrio Rizzuti · Nikolaos Mitsakos · Dingzhou Cao · Thomas Strohmer · Yang Li · Pei Peng · Gregory Ongie -
2019 : Poster Session #2 »
Yunzhu Li · Peter Meltzer · Jianing Sun · Guillaume SALHA · Marin Vlastelica Pogančić · Chia-Cheng Liu · Fabrizio Frasca · Marc-Alexandre Côté · Vikas Verma · Abdulkadir CELIKKANAT · Pierluca D'Oro · Priyesh Vijayan · Maria Schuld · Petar Veličković · Kshitij Tayal · Yulong Pei · Hao Xu · Lei Chen · Pengyu Cheng · Ines Chami · Dongkwan Kim · Guilherme Gomes · Lukasz Maziarka · Jessica Hoffmann · Ron Levie · Antonia Gogoglou · Shunwang Gong · Federico Monti · Wenlin Wang · Yan Leng · Salvatore Vivona · Daniel Flam-Shepherd · Chester Holtz · Li Zhang · MAHMOUD KHADEMI · I-Chung Hsieh · Aleksandar Stanić · Ziqiao Meng · Yuhang Jiao -
2019 : Danilo Rezende »
Danilo Jimenez Rezende -
2019 : Catered Lunch and Poster Viewing (in Workshop Room) »
Gustavo Stolovitzky · Prabhu Pradhan · Pablo Duboue · Zhiwen Tang · Aleksei Natekin · Elizabeth Bondi-Kelly · Xavier Bouthillier · Stephanie Milani · Heimo Müller · Andreas T. Holzinger · Stefan Harrer · Ben Day · Andrey Ustyuzhanin · William Guss · Mahtab Mirmomeni -
2019 : Molecules and Genomes »
David Haussler · Djork-Arné Clevert · Michael Keiser · Alan Aspuru-Guzik · David Duvenaud · David Jones · Jennifer Wei · Alexander D'Amour -
2019 Poster: Towards Interpretable Reinforcement Learning Using Attention Augmented Agents »
Alexander Mott · Daniel Zoran · Mike Chrzanowski · Daan Wierstra · Danilo Jimenez Rezende -
2019 Poster: Shaping Belief States with Generative Environment Models for RL »
Karol Gregor · Danilo Jimenez Rezende · Frederic Besse · Yan Wu · Hamza Merzic · Aaron van den Oord -
2019 Poster: Using a Logarithmic Mapping to Enable Lower Discount Factors in Reinforcement Learning »
Harm Van Seijen · Mehdi Fatemi · Arash Tavakoli -
2019 Poster: Offline Contextual Bayesian Optimization »
Ian Char · Youngseog Chung · Willie Neiswanger · Kirthevasan Kandasamy · Oak Nelson · Mark Boyer · Egemen Kolemen · Jeff Schneider -
2019 Oral: Using a Logarithmic Mapping to Enable Lower Discount Factors in Reinforcement Learning »
Harm Van Seijen · Mehdi Fatemi · Arash Tavakoli -
2018 : TrackML, a Particle Physics Tracking Machine Learning Challenge, Jean-Roch Vlimant (Caltech), Vincenzo Innocente, Andreas Salzburger (CERN), Isabelle Guyon (ChaLearn), Sabrina Amrouche, Tobias Golling, Moritz Kiehn (Geneva University),David Rousseau∗, Yet »
Andrey Ustyuzhanin · jean-roch vlimant -
2018 : Invited Talk Session 3 »
Alexandre Tkatchenko · Tommi Jaakkola · Jennifer Wei -
2018 : Contributed Work »
Thaer Moustafa Dieb · Aditya Balu · Amir H. Khasahmadi · Viraj Shah · Boris Knyazev · Payel Das · Garrett Goh · Georgy Derevyanko · Gianni De Fabritiis · Reiko Hagawa · John Ingraham · David Belanger · Jialin Song · Kim Nicoli · Miha Skalic · Michelle Wu · Niklas Gebauer · Peter Bjørn Jørgensen · Ryan-Rhys Griffiths · Shengchao Liu · Sheshera Mysore · Hai Leong Chieu · Philippe Schwaller · Bart Olsthoorn · Bianca-Cristina Cristescu · Wei-Cheng Tseng · Seongok Ryu · Iddo Drori · Kevin Yang · Soumya Sanyal · Zois Boukouvalas · Rishi Bedi · Arindam Paul · Sambuddha Ghosal · Daniil Bash · Clyde Fare · Zekun Ren · Ali Oskooei · Minn Xuan Wong · Paul Sinz · Théophile Gaudin · Wengong Jin · Paul Leu -
2018 : Poster Session 1 + Coffee »
Tom Van de Wiele · Rui Zhao · J. Fernando Hernandez-Garcia · Fabio Pardo · Xian Yeow Lee · Xiaolin Andy Li · Marcin Andrychowicz · Jie Tang · Suraj Nair · Juhyeon Lee · Cédric Colas · S. M. Ali Eslami · Yen-Chen Wu · Stephen McAleer · Ryan Julian · Yang Xue · Matthia Sabatelli · Pranav Shyam · Alexandros Kalousis · Giovanni Montana · Emanuele Pesce · Felix Leibfried · Zhanpeng He · Chunxiao Liu · Yanjun Li · Yoshihide Sawada · Alexander Pashevich · Tejas Kulkarni · Keiran Paster · Luca Rigazio · Quan Vuong · Hyunggon Park · Minhae Kwon · Rivindu Weerasekera · Shamane Siriwardhanaa · Rui Wang · Ozsel Kilinc · Keith Ross · Yizhou Wang · Simon Schmitt · Thomas Anthony · Evan Cater · Forest Agostinelli · Tegg Sung · Shirou Maruyama · Alexander Shmakov · Devin Schwab · Mohammad Firouzi · Glen Berseth · Denis Osipychev · Jesse Farebrother · Jianlan Luo · William Agnew · Peter Vrancx · Jonathan Heek · Catalin Ionescu · Haiyan Yin · Megumi Miyashita · Nathan Jay · Noga H. Rotman · Sam Leroux · Shaileshh Bojja Venkatakrishnan · Henri Schmidt · Jack Terwilliger · Ishan Durugkar · Jonathan Sauder · David Kas · Arash Tavakoli · Alain-Sam Cohen · Philip Bontrager · Adam Lerer · Thomas Paine · Ahmed Khalifa · Ruben Rodriguez · Avi Singh · Yiming Zhang -
2018 : Coffee Break 1 (Posters) »
Ananya Kumar · Siyu Huang · Huazhe Xu · Michael Janner · Parth Chadha · Nils Thuerey · Peter Lu · Maria Bauza · Anthony Tompkins · Guanya Shi · Thomas Baumeister · André Ofner · Zhi-Qi Cheng · Yuping Luo · Deepika Bablani · Jeroen Vanbaar · Kartic Subr · Tatiana López-Guevara · Devesh Jha · Fabian Fuchs · Stefano Rosa · Alison Pouplin · Alex Ray · Qi Liu · Eric Crawford -
2018 Poster: A Probabilistic U-Net for Segmentation of Ambiguous Images »
Simon Kohl · Bernardino Romera-Paredes · Clemens Meyer · Jeffrey De Fauw · Joseph R. Ledsam · Klaus Maier-Hein · S. M. Ali Eslami · Danilo Jimenez Rezende · Olaf Ronneberger -
2018 Spotlight: A Probabilistic U-Net for Segmentation of Ambiguous Images »
Simon Kohl · Bernardino Romera-Paredes · Clemens Meyer · Jeffrey De Fauw · Joseph R. Ledsam · Klaus Maier-Hein · S. M. Ali Eslami · Danilo Jimenez Rezende · Olaf Ronneberger -
2018 Poster: Neural Architecture Search with Bayesian Optimisation and Optimal Transport »
Kirthevasan Kandasamy · Willie Neiswanger · Jeff Schneider · Barnabas Poczos · Eric Xing -
2018 Spotlight: Neural Architecture Search with Bayesian Optimisation and Optimal Transport »
Kirthevasan Kandasamy · Willie Neiswanger · Jeff Schneider · Barnabas Poczos · Eric Xing -
2017 : Poster session 2 and coffee break »
Sean McGregor · Tobias Hagge · Markus Stoye · Trang Thi Minh Pham · Seungkyun Hong · Amir Farbin · Sungyong Seo · Susana Zoghbi · Daniel George · Stanislav Fort · Steven Farrell · Arthur Pajot · Kyle Pearson · Adam McCarthy · Cecile Germain · Dustin Anderson · Mario Lezcano Casado · Mayur Mudigonda · Benjamin Nachman · Luke de Oliveira · Li Jing · Lingge Li · Soo Kyung Kim · Timothy Gebhard · Tom Zahavy -
2017 : Poster session 1 and coffee break »
Tobias Hagge · Sean McGregor · Markus Stoye · Trang Thi Minh Pham · Seungkyun Hong · Amir Farbin · Sungyong Seo · Susana Zoghbi · Daniel George · Stanislav Fort · Steven Farrell · Arthur Pajot · Kyle Pearson · Adam McCarthy · Cecile Germain · Dustin Anderson · Mario Lezcano Casado · Mayur Mudigonda · Benjamin Nachman · Luke de Oliveira · Li Jing · Lingge Li · Soo Kyung Kim · Timothy Gebhard · Tom Zahavy -
2017 Poster: Imagination-Augmented Agents for Deep Reinforcement Learning »
Sébastien Racanière · Theophane Weber · David Reichert · Lars Buesing · Arthur Guez · Danilo Jimenez Rezende · Adrià Puigdomènech Badia · Oriol Vinyals · Nicolas Heess · Yujia Li · Razvan Pascanu · Peter Battaglia · Demis Hassabis · David Silver · Daan Wierstra -
2017 Oral: Imagination-Augmented Agents for Deep Reinforcement Learning »
Sébastien Racanière · Theophane Weber · David Reichert · Lars Buesing · Arthur Guez · Danilo Jimenez Rezende · Adrià Puigdomènech Badia · Oriol Vinyals · Nicolas Heess · Yujia Li · Razvan Pascanu · Peter Battaglia · Demis Hassabis · David Silver · Daan Wierstra -
2017 Poster: Variational Memory Addressing in Generative Models »
Jörg Bornschein · Andriy Mnih · Daniel Zoran · Danilo Jimenez Rezende -
2016 Poster: Unsupervised Learning of 3D Structure from Images »
Danilo Jimenez Rezende · S. M. Ali Eslami · Shakir Mohamed · Peter Battaglia · Max Jaderberg · Nicolas Heess -
2016 Poster: Towards Conceptual Compression »
Karol Gregor · Frederic Besse · Danilo Jimenez Rezende · Ivo Danihelka · Daan Wierstra -
2016 Poster: Interaction Networks for Learning about Objects, Relations and Physics »
Peter Battaglia · Razvan Pascanu · Matthew Lai · Danilo Jimenez Rezende · koray kavukcuoglu -
2015 Workshop: Applying (machine) Learning to Experimental Physics (ALEPH) and «Flavours of Physics» challenge »
Pavel Serdyukov · Andrey Ustyuzhanin · Marcin Chrząszcz · Francesco Dettori · Marc-Olivier Bettler -
2015 : Flavors of Physics Challenge »
Andrey Ustyuzhanin -
2015 Poster: Variational Information Maximisation for Intrinsically Motivated Reinforcement Learning »
Shakir Mohamed · Danilo Jimenez Rezende -
2014 Poster: Semi-supervised Learning with Deep Generative Models »
Diederik Kingma · Shakir Mohamed · Danilo Jimenez Rezende · Max Welling -
2014 Spotlight: Semi-supervised Learning with Deep Generative Models »
Diederik Kingma · Shakir Mohamed · Danilo Jimenez Rezende · Max Welling